Page 163 - Calculus Demystified
P. 163

150
                                   SOLUTION       CHAPTER 6         Transcendental Functions
                                     We can write A in simpler terms by using the multiplicative and quotient
                                   properties:
                                                           2
                                                        3
                                                A = ln(a · b ) − ln(c −4  · d)
                                                               2
                                                        3
                                                  =[ln a + ln(b )]−[ln(c −4 ) + ln d]
                                                  =[3ln a + 2 · ln b]−[(−4) · ln c + ln d]
                                                  = 3ln a + 2 · ln b + 4 · ln c − ln d.
                                  The last basic property of the logarithm is the reciprocal law: For any x> 0
                               we have
                                                           ln(1/x) =− ln x.

                                   EXAMPLE 6.2
                                   Express ln(1/7) in termsof ln 7. Express ln(9/5) in termsof ln 3 and ln 5.
                                   SOLUTION
                                     We calculate that
                                                           ln(1/7) =− ln 7,
                                                                     2
                                            ln(9/5) = ln 9 − ln 5 = ln 3 − ln 5 = 2ln 3 − ln 5.
                                                       2 −3
                                                             5
                               You Try It: Simplify ln(a b  /c ).
                               6.1.2      THE LOGARITHM FUNCTION AND THE
                                          DERIVATIVE

                               Now you will see why our new definition of logarithm is so convenient. If we want
                               to differentiate the logarithm function we can apply the Fundamental Theorem of
                               Calculus:
                                                                    x
                                                     d        d      1     1
                                                       ln x =         dt =   .
                                                    dx        dx  1  t     x
                               More generally,
                                                          d        1 du
                                                            ln u =      .
                                                         dx        u dx
                                   EXAMPLE 6.3
                                   Calculate
                                    d           d     3      d            d     5    d
                                      ln(4 + x),  ln(x − x),    ln(cos x),  [(ln x) ],  [(ln x) · (cot x)].
                                   dx           dx           dx          dx         dx
   158   159   160   161   162   163   164   165   166   167   168