Page 227 - Calculus Demystified
P. 227
214
SOLUTION CHAPTER 7 Methods of Integration
We write
π/4 π/4
4 2 2
sec xdx = sec x · sec xdx
0 0
π/4
2
2
= (tan x + 1) sec xdx.
0
2
Letting u = tan x and du = sec xdx then gives the integral
1 3
1
2 u
u + 1 du = + u
0 3 0
4
= .
3
You Try It: Calculate the integral
2π
4
6
sin x cos xdx.
π
Further techniques in the evaluation of trigonometric integrals will be explored
in the exercises.
Exercises
1. Use integration by parts to evaluate each of the following indefinite
integrals.
2
(a) log xdx
(b) x · e 3x dx
2
(c) x cos xdx
(d) t sin 3t cos 3tdt
(e) cos y ln(sin y) dy
2 4x
(f) x e dx