Page 108 - Calculus with Complex Numbers
P. 108

G eneral index

















     Argand 1                         fundamental ttleorem: ofalgebra 75' of
     Argand diagram 4                   calculus 36
     argurnent 5
     argurnent principle 76           Gauss 1

     boundedness of cot z 67          half residue ttleorem 95
                                      hyperbolic functions 17
     Cartesian form  6
     Cauchy 1, 26                     irnasnary axis 4
                                      irnasnary part 3
     Cauchy principal value 53        indented contour 61
     Cauchy-ltiemann equations 26     inequalities 9
     Cauchy's integral formula 48     integrable function 37
     Cauchy's ttleorem 42, 43
     closed contour 38                Laurent expansion 32
     conform al rnapping 22           lengdn of a contour 39
     conjugate 3                      logaddnnl 21
     continuous function 25
     contour 37                       M aclaurin cœ fficient 29
     convergence of an infinite integral 53  M aclaurin expansion 29
     cover up rule 46                 m odulus 3, 5

     de M oivre 1                     zzt.h root 8, 9
     de M oivre's ttleorem  6
     derivative 24                    order of a pole 33
     differentiable function 25       order of a zero 75
                                      orientation of a contour 38
     differentiating ttle denorninator 47
     double pole 33                   parallelogram law of addition 5
     double zero 75                   pararnetrisation of a contour 37
     D-sham d contour 54
                                      pizza slice contour 59
                                      polar form  6
     essential singularity 33         pole 33
     estirnate lernrna 39             polyrlornial 14
     Euler 1                          prirnitive of a function 37
     Euler's formula 6                prirnitive zzt.h root of unity 9
     Euler's formulae for cos p, sin 0 7  principal part 33
   103   104   105   106   107   108   109