Page 108 - Calculus with Complex Numbers
P. 108
G eneral index
Argand 1 fundamental ttleorem: ofalgebra 75' of
Argand diagram 4 calculus 36
argurnent 5
argurnent principle 76 Gauss 1
boundedness of cot z 67 half residue ttleorem 95
hyperbolic functions 17
Cartesian form 6
Cauchy 1, 26 irnasnary axis 4
irnasnary part 3
Cauchy principal value 53 indented contour 61
Cauchy-ltiemann equations 26 inequalities 9
Cauchy's integral formula 48 integrable function 37
Cauchy's ttleorem 42, 43
closed contour 38 Laurent expansion 32
conform al rnapping 22 lengdn of a contour 39
conjugate 3 logaddnnl 21
continuous function 25
contour 37 M aclaurin cœ fficient 29
convergence of an infinite integral 53 M aclaurin expansion 29
cover up rule 46 m odulus 3, 5
de M oivre 1 zzt.h root 8, 9
de M oivre's ttleorem 6
derivative 24 order of a pole 33
differentiable function 25 order of a zero 75
orientation of a contour 38
differentiating ttle denorninator 47
double pole 33 parallelogram law of addition 5
double zero 75 pararnetrisation of a contour 37
D-sham d contour 54
pizza slice contour 59
polar form 6
essential singularity 33 pole 33
estirnate lernrna 39 polyrlornial 14
Euler 1 prirnitive of a function 37
Euler's formula 6 prirnitive zzt.h root of unity 9
Euler's formulae for cos p, sin 0 7 principal part 33