Page 48 - Calculus with Complex Numbers
P. 48

Ffgure 4.5


     Observe that the orientation of p , y4 is given by decreasing t. W e indicate this by
     writing 1 k: t k: 0 instead of 0 :jq t :jq 1.

     4 .3  C ontou r i ntegrals

     Given a contour y and a function flz) defined for z eE y we deline

                     m
         /
        j .t'(z) dz = zyti-xlj )-) .f(z) dz.
     Theorenls 1 and 2 of S ection 4.1 renlaùA valid in the conlplex context also the
     combination rules for integrals. The inequalities generalise to the following.


     4.4  Estim ate Iem m a

     lf I.f(z)I:i M for z e y, then

           flz) dz :% M lv,
          /
           r
     where l  is the length of y .
       Regarding evaluation of contour integrals we give three methods.


     4 .5  M ethod I : Substituting the param etri c fun ction
     W e describe the method by way of examples.

     Example 1  Hvaluate

            n dz,
           Z
         p'

     where y is the unit circle parametrised by letting z = eit where 0 :jq t :jq 2zr .
   43   44   45   46   47   48   49   50   51   52   53