Page 14 - Calculus Workbook For Dummies
P. 14

xii      Calculus Workbook For Dummies



                         Chapter 6: Rules, Rules, Rules: The Differentiation Handbook....................................69
                              Rules for Beginners..................................................................................................................69
                              Giving It Up for the Product and Quotient Rules .................................................................72
                              Linking Up with the Chain Rule..............................................................................................75
                              What to Do with Ys: Implicit Differentiation.........................................................................78
                              Getting High on Calculus: Higher Order Derivatives...........................................................80
                              Solutions for Differentiation Problems..................................................................................82

                         Chapter 7: Analyzing Those Shapely Curves with the Derivative ...............................91
                              The First Derivative Test and Local Extrema .......................................................................91
                              The Second Derivative Test and Local Extrema ..................................................................95
                              Finding Mount Everest: Absolute Extrema ...........................................................................98
                              Smiles and Frowns: Concavity and Inflection Points.........................................................102
                              The Mean Value Theorem: Go Ahead, Make My Day.........................................................106
                              Solutions for Derivatives and Shapes of Curves................................................................108
                         Chapter 8: Using Differentiation to Solve Practical Problems...................................123
                              Optimization Problems: From Soup to Nuts.......................................................................123
                              Problematic Relationships: Related Rates..........................................................................127
                              A Day at the Races: Position, Velocity, and Acceleration .................................................131
                              Make Sure You Know Your Lines: Tangents and Normals.................................................134
                              Looking Smart with Linear Approximation.........................................................................138
                              Solutions to Differentiation Problem Solving .....................................................................140

                     Part IV: Integration and Infinite Series.......................................157


                         Chapter 9: Getting into Integration..................................................................................159
                              Adding Up the Area of Rectangles: Kid Stuff ......................................................................159
                              Sigma Notation and Reimann Sums: Geek Stuff .................................................................162
                              Close Isn’t Good Enough: The Definite Integral and Exact Area ......................................166
                              Finding Area with the Trapezoid Rule and Simpson’s Rule..............................................168
                              Solutions to Getting into Integration...................................................................................171
                         Chapter 10: Integration: Reverse Differentiation..........................................................177
                              The Absolutely Atrocious and Annoying Area Function...................................................177
                              Sound the Trumpets: The Fundamental Theorem of Calculus ........................................179
                              Finding Antiderivatives: The Guess and Check Method...................................................183
                              The Substitution Method: Pulling the Switcheroo.............................................................185
                              Solutions to Reverse Differentiation Problems ..................................................................188
                         Chapter 11: Integration Rules for Calculus Connoisseurs ..........................................193
                              Integration by Parts: Here’s How u du It.............................................................................193
                              Transfiguring Trigonometric Integrals................................................................................196
                              Trigonometric Substitution: It’s Your Lucky Day!..............................................................198
                              Partaking of Partial Fractions...............................................................................................201
                              Solutions for Integration Rules.............................................................................................205
                         Chapter 12: Who Needs Freud? Using the Integral to Solve Your Problems...........219
                              Finding a Function’s Average Value .....................................................................................219
                              Finding the Area between Curves........................................................................................220
                              Volumes of Weird Solids: No, You’re Never Going to Need This......................................222
                              Arc Length and Surfaces of Revolution...............................................................................227
                              Getting Your Hopes Up with L’Hôpital’s Rule .....................................................................229
   9   10   11   12   13   14   15   16   17   18   19