Page 303 - Caldera Volcanism Analysis, Modelling and Response
P. 303
278 J. Martı ´ et al.
Sciences) and from a Royal Society University Research Fellowship. JM is grateful for the MEC
grant PR-2006-0499. The authors are thankful to reviewers Y. Lavalle ´e and G. de Natale for their
constructive criticisms, and L. Steck for providing the graphical material.
REFERENCES
Ablay, G., Kearey, P., 2000. Gravity constraints on the structure and volcanic evolution of Tenerife,
Canary Islands. J. Geophys. Res., 105, 5783–5796.
Acocella, V., 2008. Structural development of calderas: a synthesis from analogue experiments (this
volume).
Acocella, V., Cifelli, F., Funiciello, R., 2000. Analogue models of collapse calderas and resurgent
domes. J. Volcanol. Geotherm. Res., 104, 81–96.
Acocella, V., Cifelli, F., Funiciello, R., 2001. Formation of nonintersecting nested calderas: insights
from analogue models. Terra Nova, 13, 58–63.
Acocella, V., Funiciello, R., Marotta, E., Orsi, G., de Vita, S., 2004. The role of extensional structures
on experimental calderas and resurgence. J. Volcanol. Geotherm. Res., 129, 199–217.
Aguirre-Dı ´az, G.J., Labharte-Herna ´ndez, G., 2003. Fissure ignimbrites: fissure-source origin for
voluminous ignimbrites from the Sierra Madre Occidental, Me ´xico and its relationship with
basin and range faulting. Geology, 31(9), 773–776.
Aprea, C.M., Hildebrand, S., Fehler, M., Steck, L., Baldridge, W., Roberts, P., Thurber, C.H., Lutter,
W.J, 2002. Three-dimensional Kirchhoff migration: imaging of the Jemez volcanic field using
teleseismic data. J. Geophys. Res. B, Solid Earth Planets, 107(10), 15.
Aran ˜a, V., Camacho, A.G., Garcia, A., Montesinos, F.G., Blanco, I., Vieira, R., Felpeto, A., 2000.
Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic and
volcanological data. J. Volcanol. Geotherm. Res., 103(1–4), 43–64.
Aster, R.C., Meyer, R.P., 1988. Three-dimensional velocity structure and hypocenter distribution in
the Campi Flegrei caldera, Italy. Tectonophysics, 149(3–4), 195–218.
Bacon, C.R., 1983. Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range,
U.S.A. J. Volcanol. Geotherm. Res., 18, 57–115.
Bai, C.-Y., Greenhalgh, S., 2005. 3D multi-step travel time tomography: imaging the local, deep
velocity structure of Rabaul volcano, Papua New Guinea. Phys. Earth Planet. Inter., 151(3–4),
259–275.
Battaglia, M., Segall, P., Roberts, C., 2003. The mechanics of unrest at Long Valley caldera,
California. 2. Constraining the nature of the source using geodetic and micro-gravity data.
J. Volcanol. Geotherm. Res., 127(3–4), 219–245.
Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., De Natale, G., 2006. Evidence for fluid migration
as the cause of unrest at Campi Flegrei caldera (Italy). Geophys. Res. Lett. Res. Lett., 33,
L01307.
Beauducel, F., de Natale, G., Obrizzo, F., Pingue, F., 2004. 3-D modelling of Campi Flegrei ground
deformations: role of caldera boundary discontinuities. Pure Appl. Geophys., 161, 1329–1344.
Bibby, H.M., Caldwell, T.G., Davey, F.J., Webb, T.H., 1995. Geophysical evidence on the structure
of the Taupo volcanic zone and its hydrothermal circulation. J. Volcanol. Geotherm. Res.,
68(1–3), 29–58.
Blakely, R.J., 1996. Potential theory in Gravity and Magnetic Applications. Cambridge University
Press, New York, 441 pp.
Bower, S.M., Woods, A.W., 1997. Control of magma volatile content and chamber depth on the mass
erupted during explosive volcanic eruptions. J. Geophys. Res., 102, 10273–10290.
Bower, S.M., Woods, A.W., 1998. On the influence of magma chambers in controlling the evolution
of explosive volcanic eruptions. J. Volcanol. Geotherm. Res., 86, 67–78.
Branney, M.J., 1995. Downsag and extension at calderas: new perspectives on collapse geometries
from ice-melt, mining, and volcanic subsidence. Bull. Volcanol., 57, 303–318.