Page 44 - Carbon Nanotubes
P. 44
Physics of carbon nanotubes 35
on the property under investigation. To see 1D effects, 4. D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman,
faceting should be avoided, insofar as facets lead to R. Savoy, J. Vazquez, and R. Beyers, Nature (London)
2D behavior, as in graphite. To emphasize the possi- 363, 605 (1993).
bility of semiconducting properties in non-defective 5. S. Iijima and T. Ichihashi, Nature (London) 363, 603
(1993).
carbon nanotubes, and to distinguish between conduc- 6. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys.
tors and semiconductors of similar diameter, experi- Rev. B 45, 6234 (1992).
ments should be done on nanotubes of the smallest 7. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus,
Phys. Rev. B 47, 16671 (1993).
possible diameter, To demonstrate experimentally the 8. P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon
high density of electronic states expected for 1D sys- 33, 959 (1995).
tems, experiments should ideally be carried out on 9. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and
single-walled tubules of small diameter. However, to G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993).
demonstrate magnetic properties in carbon nanotubes 10. Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M.
S. Dresselhaus, Mater. Sci. Engin. B19, 185 (1993).
with a magnetic field normal to the tubule axis, the tu- 11. J. W. Mintmire and C. T. White, Carbon 33, 893 (1995).
bule diameter should be large compared with the Lan- 12. S. Wang and D. Zhou, Chem. Phys. Lett. 225, 165
dau radius and, in this case, a tubule size of - 10 nm (1994).
would be more desirable, because the magnetic local- 13. C. H. Olk and J. P. Heremans, J. Mater. Res. 9, 259
ization within the tubule diameter would otherwise (1 994).
lead to high field graphitic behavior. 14. J. P. Issi et al., Carbon 33, 941 (1995).
15. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J.
The ability of experimentalists to study 1D quan- Appl. Phys. 73, 494 (1993).
tum behavior in carbon nanotubes would be greatly 16. J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70,
enhanced if the purification of carbon tubules in the 1858 (1993).
synthesis process could successfully separate tubules 17. J. C. Charlier, Carbon Nunotubes and Fullerenes. PhD
thesis, Catholic University of Louvain, Department of
of a given diameter and chirality. A new method for Physics, May 1994.
producing mass quantities of carbon nanotubes under 18. Ph. Lambin, L. Philippe, J. C. Charlier, and J. P.
controlled conditions would be highly desirable, as Michenaud, Comput. Muter. Sei. 2, 350 (1994).
is now the case for producing commercial quantities 19. Ph. Lambin, L. Philippe, J. C. Charlier, and J. P.
of carbon fibers. It is expected that nano-techniques Michenaud, In Proceedings of the Winter School on Ful-
lerenes (Edited by H. Kuzmany, J. Fink, M. Mehring,
for manipulating very small quantities of material of and S. Roth), Kirchberg Winter School, Singapore,
nm size[14,36] will be improved through research of World Scientific Publishing Co., Ltd. (1994).
carbon nanotubes, including research capabilities in- 20. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-
haus, Appl. Phys. Lett. 60, 2204 (1992).
volving the STM and AFM techniques. Also of inter- 21. M. S. Dresselhaus, G. Dresselhaus, and Riichiro Saito,
est will be the bonding of carbon nanotubes to the Mater. Sei. Engin. B19, 122 (1993).
other surfaces, and the preparation of composite or 22. Y. Yosida, Fullerene Sci. Tech. I, 55 (1993).
multilayer systems that involve carbon nanotubes. The 23. R. E. Peierls, In Quantum Theory of Solids. London,
Oxford University Press (1955).
unbelievable progress in the last 30 years of semicon- 24. J. W. Mintmire, Phys. Rev B 43, 14281 (June 1991).
ducting physics and devices inspires our imagination 25. Kikuo Harigaya, Chem. Phys. Lett. 189, 79 (1992).
about future progress in 1D systems, where carbon 26. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-
nanotubes may become a benchmark material for haus, In Electrical, Optical and Magnetic Properties of
study of 1D systems about a cylindrical surface. Organic Solid State Materials, MRS Symposia Proceed-
ings, Boston. Edited by L. Y. Chiang, A. F. Garito, and
D. J. Sandman, vol. 247, p. 333, Pittsburgh, PA, Ma-
Acknowledgements-We gratefully acknowledge stimulating terials Research Society Press (1992).
discussions with T. W. Ebbesen, M. Endo, and R. A. Jishi. 27. K. Harigaya and M. Fujita, Phys. Rev. B 47, 16563
We are also in debt to many colleagues for assistance. The (1 993).
research at MIT is funded by NSF grant DMR-92-01878. One 28. K. Harigaya and M: Fujita, Synth. Metals 55, 3196
of the authors (RS) acknowledges the Japan Society for the (1993).
Promotion of Science for supporting part of his joint research 29. N. A. Viet, H. Ajiki, and T. Ando, ISSP Technical Re-
with MIT. Part of the work by RS is supported by a Grant-
in-Aid for Scientific Research in Priority Area “Carbon oorf 2828 (1994).
~I
Cluster” (Area No. 234/05233214) from the Ministry of Ed- 30. J. C. Charlier, X. Gonze, and J. P. Michenaud, Euro-
ucation, Science and Culture, Japan. phys. Lett. 29, 43 (1994).
31. J. Y. Yi and J. Bernholc, Phys. Rev. B47, 1708 (1993).
32. T. W. Ebbesen, Annu. Rev. Mater. Sei. 24, 235 (1994).
REFERENCE§ 33. H. Frohlich, Phys. Rev. 79, 845 (1950).
34. H. Frohlich, Proc. Roy. SOC. London A215, 291 (1952).
1. S. Iijima, Nature (London) 354, 56 (1991). 35. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus,
2. T. W. Ebbesen and 2’. M. Ajayan, Nature (London) 358, Phys. Rev. B 48, 11385 (1993).
220 (1992). 36. L. Langer, L. Stockman, J. P. Heremans, V. Bayot,
3. T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Mat- C. H. Olk, C. Van Haesendonck, Y. Bruynseraede, and
sui, and K. Tanigaki, Chem. Phys. Lett. 209, 83 (1993). J. P. Issi, J. Mat. Res. 9, 927 (1994).