Page 44 - Carbon Nanotubes
P. 44

Physics of  carbon nanotubes                      35
           on the property under investigation. To see 1D effects,   4.  D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman,
           faceting should be avoided, insofar as facets lead to   R. Savoy, J. Vazquez, and R. Beyers, Nature (London)
           2D behavior, as in graphite. To emphasize the possi-   363, 605 (1993).
           bility of  semiconducting properties in non-defective   5.  S.  Iijima and T.  Ichihashi, Nature (London) 363, 603
                                                         (1993).
           carbon nanotubes, and to distinguish between conduc-   6.  M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys.
           tors and semiconductors of similar diameter, experi-   Rev. B 45, 6234 (1992).
           ments should be done on nanotubes of  the smallest   7.  R.  A.  Jishi,  M. S. Dresselhaus,  and G.  Dresselhaus,
                                                         Phys. Rev. B 47, 16671 (1993).
           possible diameter, To demonstrate experimentally the   8. P.  C. Eklund,  J.  M.  Holden, and R. A. Jishi, Carbon
           high density of electronic states expected for 1D sys-   33, 959 (1995).
           tems,  experiments should  ideally be carried  out  on   9.  R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and
           single-walled tubules of small diameter. However, to   G. Dresselhaus,  Chem. Phys. Lett. 209, 77 (1993).
           demonstrate magnetic properties in carbon nanotubes   10.  Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M.
                                                         S. Dresselhaus, Mater. Sci.  Engin. B19, 185 (1993).
           with a magnetic field normal to the tubule axis, the tu-   11.  J. W. Mintmire and C. T. White, Carbon 33, 893 (1995).
           bule diameter should be large compared with the Lan-   12.  S.  Wang  and D.  Zhou,  Chem.  Phys.  Lett.  225,  165
           dau radius and, in this case, a tubule size of - 10 nm   (1994).
           would be more desirable, because the magnetic local-   13.  C. H. Olk and J. P.  Heremans, J. Mater. Res. 9, 259
           ization  within  the tubule  diameter  would  otherwise   (1 994).
           lead to high field graphitic behavior.     14. J. P. Issi et al., Carbon 33, 941 (1995).
                                                      15. R.  Saito, G.  Dresselhaus,  and M.  S. Dresselhaus,  J.
             The ability of experimentalists to study 1D quan-   Appl. Phys. 73, 494 (1993).
           tum behavior in carbon nanotubes would be greatly   16.  J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70,
           enhanced if the purification of carbon tubules in the   1858 (1993).
           synthesis process could successfully separate tubules   17.  J. C. Charlier, Carbon Nunotubes and Fullerenes. PhD
                                                         thesis, Catholic University of Louvain, Department of
           of a given diameter and chirality. A new method for   Physics, May 1994.
           producing mass quantities of carbon nanotubes under   18.  Ph.  Lambin,  L.  Philippe,  J.  C.  Charlier, and  J. P.
           controlled  conditions  would  be  highly desirable,  as   Michenaud, Comput. Muter. Sei. 2, 350 (1994).
           is now the case for producing commercial quantities   19.  Ph.  Lambin,  L.  Philippe,  J.  C.  Charlier,  and  J.  P.
           of  carbon fibers. It is expected that nano-techniques   Michenaud, In Proceedings of the Winter School on Ful-
                                                         lerenes (Edited by H. Kuzmany, J. Fink, M. Mehring,
           for manipulating very small quantities of material of   and  S.  Roth),  Kirchberg Winter  School,  Singapore,
           nm size[14,36] will be improved through research of   World Scientific Publishing Co., Ltd. (1994).
           carbon nanotubes,  including research capabilities in-   20.  R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-
                                                         haus, Appl. Phys. Lett. 60, 2204 (1992).
           volving the STM and AFM techniques. Also of inter-   21.  M. S. Dresselhaus,  G. Dresselhaus, and Riichiro Saito,
           est will be the bonding  of  carbon nanotubes to the   Mater. Sei. Engin. B19, 122 (1993).
           other surfaces, and the preparation of composite or   22.  Y.  Yosida, Fullerene Sci.  Tech. I, 55 (1993).
           multilayer systems that involve carbon nanotubes. The   23.  R. E. Peierls, In Quantum Theory of Solids. London,
                                                         Oxford University Press (1955).
           unbelievable progress in the last 30 years of semicon-   24.  J. W. Mintmire, Phys. Rev B 43, 14281 (June  1991).
           ducting physics and devices inspires our imagination   25.  Kikuo Harigaya, Chem. Phys. Lett. 189, 79 (1992).
           about future progress in  1D systems, where carbon   26.  R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-
           nanotubes may  become  a  benchmark  material  for   haus, In Electrical, Optical and Magnetic Properties of
           study of  1D systems about a cylindrical surface.   Organic Solid State Materials, MRS Symposia Proceed-
                                                         ings, Boston. Edited by L. Y. Chiang, A. F. Garito, and
                                                         D. J. Sandman, vol. 247, p. 333, Pittsburgh, PA, Ma-
           Acknowledgements-We  gratefully acknowledge stimulating   terials  Research Society Press  (1992).
           discussions with T. W.  Ebbesen, M. Endo, and R. A. Jishi.   27.  K.  Harigaya and M.  Fujita,  Phys. Rev.  B  47, 16563
           We are also in debt to many colleagues for assistance. The   (1 993).
           research at MIT is funded by NSF grant DMR-92-01878. One   28.  K.  Harigaya  and  M:  Fujita,  Synth. Metals 55, 3196
           of the authors (RS) acknowledges the Japan Society for the   (1993).
           Promotion of Science for supporting part of his joint research   29.  N. A. Viet, H. Ajiki, and T. Ando, ISSP Technical Re-
           with MIT. Part of the work by RS is supported by a Grant-
          in-Aid  for  Scientific Research  in  Priority  Area  “Carbon   oorf 2828 (1994).
                                                                ~I
           Cluster” (Area No. 234/05233214) from the Ministry of Ed-   30.  J. C. Charlier, X. Gonze, and J. P.  Michenaud, Euro-
          ucation, Science and Culture,  Japan.         phys. Lett. 29, 43 (1994).
                                                      31.  J. Y. Yi and J. Bernholc, Phys. Rev. B47, 1708 (1993).
                                                      32.  T. W. Ebbesen, Annu. Rev. Mater. Sei. 24, 235 (1994).
                         REFERENCE§                   33.  H. Frohlich, Phys. Rev. 79, 845 (1950).
                                                      34.  H. Frohlich, Proc. Roy. SOC. London A215, 291 (1952).
           1.  S. Iijima, Nature (London) 354, 56  (1991).   35.  R. A.  Jishi,  M.  S. Dresselhaus,  and  G.  Dresselhaus,
           2.  T. W.  Ebbesen and 2’.  M. Ajayan, Nature (London) 358,   Phys. Rev. B 48,  11385 (1993).
             220 (1992).                              36.  L.  Langer, L.  Stockman, J.  P.  Heremans,  V.  Bayot,
           3.  T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Mat-   C. H. Olk, C. Van Haesendonck, Y. Bruynseraede, and
             sui, and K. Tanigaki, Chem. Phys. Lett. 209, 83 (1993).   J. P.  Issi, J. Mat. Res. 9, 927 (1994).
   39   40   41   42   43   44   45   46   47   48   49