Page 293 - Cascade biocatalysis
P. 293
References 269
oxynitrilase–nitrilase bienzymatic cas- 69. Holt, J. and Hanefeld, U. (2009) Enan-
cade: a nitrilase surprisingly shows tioselective enzyme-catalysed synthesis
nitrile hydratase activity. Tetrahedron: of cyanohydrins. Curr. Org. Synth., 6,
Asymmetry, 17, 320–323. 15–37.
63. Rustler, S., Motejadded, H., 70. Kiziak, C., Klein, J., and Stolz, A. (2007)
Altenbuchner, J., and Stolz, A. (2008) Influence of different carboxy-terminal
Simultaneous expression of an arylace- mutations on the substrate-, reaction-
tonitrilase from Pseudomonas fluorescens and enantiospecificity of the arylaceto-
and a (S)-oxynitrilase from Manihot escu- nitrilase from Pseudomonas fluorescens
lenta in Pichia pastoris for the synthesis EBC191. Protein Eng. Des. Sel., 20,
of (S)-mandelic acid. Appl. Microbiol. 385–396.
Biotechnol., 80, 87–97. 71. Kiziak, C. and Stolz, A. (2009) Identifica-
64. Sosedov, O., Matzer, K., B¨ urger, S., tion of amino acid residues responsible
Kiziak, C., Baum, S., Altenbuchner, J., for the enantioselectivity and amide for-
Chmura, A., van Rantwijk, F., and Stolz, mation capacity of the arylacetonitrilase
from Pseudomonas fluorescens EBC191.
A. (2009) Construction of recombinant
Appl. Environ. Microbiol., 75, 5592–5599.
Escherichia coli catalysts which simul-
72. Hirrlinger, B., Stolz, A., and
taneously express an (S)-oxynitrilase
Knackmuss, H.J. (1996) Purifica-
and different nitrilase variants for the
synthesis of (S)-mandelic acid and (S)- tion and properties of an amidase
mandelic amide from benzaldehyde from Rhodococcus erythropolis MP50
and cyanide. Adv.Synth.Catal., 351, which enantioselectively hydrolyzes
2-arylpropionamides. J. Bacteriol., 178,
1531–1538.
3501–3507.
65. Rustler, S., M¨ uller, A., Windeisen, V.,
73. Chmura, A., Rustler, S., Paravidino, M.,
Chmura, A., Fernandes, B.C.M., Kiziak,
Rantwijk, F. V., Stolz, A., and Sheldon,
C., and Stolz, A. (2007) Conversion of R. A. (2013) The combi-CLEA approach:
mandelonitrile and phenylglycinenitrile cascade synthesis of enantiomerically
by recombinant E. coli cells synthesizing pure (S)-mandelic acid, Tetrahedron:
a nitrilase from Pseudomonas fluorescens
Asymmetry, 24, 1225–1232.
EBC191. Enzyme Microb. Technol., 40,
74. Sorokin, D.Y., van Pelt, S., Tourova,
598–606.
T.P., and Muyzer, G. (2007) Micro-
66. Sosedov, O., Baum, S., B¨ urger, S.,
bial isobutyronitrile utilization under
Matzer, K., Kiziak, C., and Stolz, A.
haloalkaline conditions. Appl. Environ.
(2010) Construction and application of
Microbiol., 73, 5574–5579.
variants of the Pseudomonas fluorescens
75. Sorokin, D.Y., van Pelt, S., Tourova,
EBC191 arylacetonitrilase for increased
T.P., and Evtushenko, L.I. (2009)
production of acids or amides. Appl.
Nitriliruptor alkaliphilus gen. nov., sp.
Environ. Microbiol., 76, 3668–3674.
nov., a deep-lineage haloalkaliphilic
67. Baum, S., van Rantwijk, F., and Stolz, actinobacterium from soda lakes capa-
A. (2012) Application of a recombi- ble of growth on aliphatic nitriles, and
nant Escherichia coli whole-cell catalyst proposal of Nitriliruptoraceae fam. nov.
expressing hydroxynitrile lyase and nitri- and Nitriliruptorales ord. nov. Int. J. Syst.
lase activities in ionic liquids for the Evol. Microbiol., 59, 248–253.
production of (S)-mandelic acid and 76. van Pelt, S., Quignard, S., Kub´ aˇ c, D.,
(S)-mandeloamide. Adv.Synth.Catal., Sorokin, D.Y., van Rantwijk, F., and
354, 113–122. Sheldon, R.A. (2008) Nitrile hydratase
68. Griengl, H., Klempier, N., P¨ ochlauer, CLEAs: the immobilization and stabi-
P., Schmidt, M., Shi, N., and lization of an industrially important
Zabelinskaja-Mackova, A.A. (1998) enzyme. Green Chem., 10, 395–400.
Enzyme catalysed formation of (S)- 77. van Pelt, S., van Rantwijk, F., and
cyanohydrins derived from aldehydes Sheldon, R.A. (2009) Synthesis of
and ketones in a biphasic solvent sys- aliphatic (S)-α-hydroxycarboxylic amides
tem. Tetrahedron, 54, 14477–14486. using a one-pot bienzymatic cascade of