Page 293 - Cascade biocatalysis
P. 293

References  269

                  oxynitrilase–nitrilase bienzymatic cas-  69. Holt, J. and Hanefeld, U. (2009) Enan-
                  cade: a nitrilase surprisingly shows  tioselective enzyme-catalysed synthesis
                  nitrile hydratase activity. Tetrahedron:  of cyanohydrins. Curr. Org. Synth., 6,
                  Asymmetry, 17, 320–323.         15–37.
               63. Rustler, S., Motejadded, H.,  70. Kiziak, C., Klein, J., and Stolz, A. (2007)
                  Altenbuchner, J., and Stolz, A. (2008)  Influence of different carboxy-terminal
                  Simultaneous expression of an arylace-  mutations on the substrate-, reaction-
                  tonitrilase from Pseudomonas fluorescens  and enantiospecificity of the arylaceto-
                  and a (S)-oxynitrilase from Manihot escu-  nitrilase from Pseudomonas fluorescens
                  lenta in Pichia pastoris for the synthesis  EBC191. Protein Eng. Des. Sel., 20,
                  of (S)-mandelic acid. Appl. Microbiol.  385–396.
                  Biotechnol., 80, 87–97.      71. Kiziak, C. and Stolz, A. (2009) Identifica-
               64. Sosedov, O., Matzer, K., B¨ urger, S.,  tion of amino acid residues responsible
                  Kiziak, C., Baum, S., Altenbuchner, J.,  for the enantioselectivity and amide for-
                  Chmura, A., van Rantwijk, F., and Stolz,  mation capacity of the arylacetonitrilase
                                                  from Pseudomonas fluorescens EBC191.
                  A. (2009) Construction of recombinant
                                                  Appl. Environ. Microbiol., 75, 5592–5599.
                  Escherichia coli catalysts which simul-
                                               72. Hirrlinger, B., Stolz, A., and
                  taneously express an (S)-oxynitrilase
                                                  Knackmuss, H.J. (1996) Purifica-
                  and different nitrilase variants for the
                  synthesis of (S)-mandelic acid and (S)-  tion and properties of an amidase
                  mandelic amide from benzaldehyde  from Rhodococcus erythropolis MP50
                  and cyanide. Adv.Synth.Catal., 351,  which enantioselectively hydrolyzes
                                                  2-arylpropionamides. J. Bacteriol., 178,
                  1531–1538.
                                                  3501–3507.
               65. Rustler, S., M¨ uller, A., Windeisen, V.,
                                               73. Chmura, A., Rustler, S., Paravidino, M.,
                  Chmura, A., Fernandes, B.C.M., Kiziak,
                                                  Rantwijk, F. V., Stolz, A., and Sheldon,
                  C., and Stolz, A. (2007) Conversion of  R. A. (2013) The combi-CLEA approach:
                  mandelonitrile and phenylglycinenitrile  cascade synthesis of enantiomerically
                  by recombinant E. coli cells synthesizing  pure (S)-mandelic acid, Tetrahedron:
                  a nitrilase from Pseudomonas fluorescens
                                                  Asymmetry, 24, 1225–1232.
                  EBC191. Enzyme Microb. Technol., 40,
                                               74. Sorokin, D.Y., van Pelt, S., Tourova,
                  598–606.
                                                  T.P., and Muyzer, G. (2007) Micro-
               66. Sosedov, O., Baum, S., B¨ urger, S.,
                                                  bial isobutyronitrile utilization under
                  Matzer, K., Kiziak, C., and Stolz, A.
                                                  haloalkaline conditions. Appl. Environ.
                  (2010) Construction and application of
                                                  Microbiol., 73, 5574–5579.
                  variants of the Pseudomonas fluorescens
                                               75. Sorokin, D.Y., van Pelt, S., Tourova,
                  EBC191 arylacetonitrilase for increased
                                                  T.P., and Evtushenko, L.I. (2009)
                  production of acids or amides. Appl.
                                                  Nitriliruptor alkaliphilus gen. nov., sp.
                  Environ. Microbiol., 76, 3668–3674.
                                                  nov., a deep-lineage haloalkaliphilic
               67. Baum, S., van Rantwijk, F., and Stolz,  actinobacterium from soda lakes capa-
                  A. (2012) Application of a recombi-  ble of growth on aliphatic nitriles, and
                  nant Escherichia coli whole-cell catalyst  proposal of Nitriliruptoraceae fam. nov.
                  expressing hydroxynitrile lyase and nitri-  and Nitriliruptorales ord. nov. Int. J. Syst.
                  lase activities in ionic liquids for the  Evol. Microbiol., 59, 248–253.
                  production of (S)-mandelic acid and  76. van Pelt, S., Quignard, S., Kub´ aˇ c, D.,
                  (S)-mandeloamide. Adv.Synth.Catal.,  Sorokin, D.Y., van Rantwijk, F., and
                  354, 113–122.                   Sheldon, R.A. (2008) Nitrile hydratase
               68. Griengl, H., Klempier, N., P¨ ochlauer,  CLEAs: the immobilization and stabi-
                  P., Schmidt, M., Shi, N., and   lization of an industrially important
                  Zabelinskaja-Mackova, A.A. (1998)  enzyme. Green Chem., 10, 395–400.
                  Enzyme catalysed formation of (S)-  77. van Pelt, S., van Rantwijk, F., and
                  cyanohydrins derived from aldehydes  Sheldon, R.A. (2009) Synthesis of
                  and ketones in a biphasic solvent sys-  aliphatic (S)-α-hydroxycarboxylic amides
                  tem. Tetrahedron, 54, 14477–14486.  using a one-pot bienzymatic cascade of
   288   289   290   291   292   293   294   295   296   297   298