Page 155 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 155

144                                        SUPERVISED LEARNING

            Being a sum of Gaussian random variables, this estimate has a Gaussian
            distribution too. The expectation of the estimate is:


                                   1  X          1  X
                                      N k
                                                   N k
                             m                        m ¼ m
                           E½^ m м      E½z n м                      ð5:10Þ
                              k                        k    k
                                  N k           N k
                                     n¼1           n¼1
            where m is the true expectation of z. Hence, the estimation is unbiased.
                   k
            The covariance matrix of the estimation error is found as:
                                  h                T  i  1
                                   m
                                            m
                            m ¼ E ð^ m   m Þð^ m   m Þ  ¼  C k         ð5:11Þ
                          C ^ m k    k   k   k    k
                                                        N k
            The proof is left as an exercise for the reader.



            5.2.2  Gaussian distribution, covariance matrix unknown

            Next, we consider the case where under class ! k the measurement vector
            z is a Gaussian random vector with unknown covariance matrix C k . For
            the moment we assume that the expectation vector m is known. No
                                                              k
            prior knowledge is available. The purpose is to find an estimator for C k .
              The maximum likelihood estimate follows from (5.5) and (5.7):


                           (                 )
                             N k                  1  X
                                                     N k
               ^
                             X
               C C k ¼ argmax   lnðpðz n j! k ; CÞÞ  ¼  ðz n   m Þðz n   m Þ T
                                                              k
                                                                      k
                       C     n¼1                  N k  n¼1
                                                                       ð5:12Þ
            The last step in (5.12) is non-trivial. The proof is rather technical and
            will be omitted. However, the result is plausible since the estimate is the
                                                     T
            average of the N k matrices (z n   m )(z n   m ) whereas the true covari-
                                                   k
                                           k
                                                        T
            ance matrix is the expectation of (z   m )(z   m ) .
                                               k
                                                      k
                                                               ^
                                                               C
              The probability distribution of the random variables in C k is a Wishart
            distribution. The estimator is unbiased. The variances of the elements of
            ^
            C C k are:
                                         1
                                 ^                      2
                                 C м               þ C                ð5:13Þ
                             Var½C k i; j   C k i; i  C k j; j
                                                        k i; j
                                        N k
   150   151   152   153   154   155   156   157   158   159   160