Page 65 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 65

54                                       PARAMETER ESTIMATION

             for i ¼ 1:length(z)
               [dummy,ind] ¼ max(px_z(x,z(i))); x_map(i) ¼ x(ind);
               x_mse(i) ¼ sum(pz_x(z(i),x).*px(x).*x)
                 ./.sum(pz_x(z(i),x).*px(x));
               ind ¼ find((cumsum(px_z(x,z(i))) ./ .sum(px_z(x,z(i))))>0.5);
               x_mae(i) ¼ x(ind(1));
             end
             figure; clf; plot(zset,xset,‘.’); hold on;
             plot(z,x_map,‘k-.’); plot(z,x_mse,‘k--’);
             plot(z,x_mae,‘k-’);
             legend(‘realizations’,‘MAP’,‘MSE’,‘MAE’);
            return
            function ret ¼ px(x)
             global a b; ret ¼ betapdf(x,a,b);
            return
            function ret ¼ pz_x(z,x)
             global Np; ret ¼ (z>0).*(Np./x).*gampdf(Np*z./x,Np,1);
            return
            function ret ¼ pz(z)
             global xrange; ret ¼ sum(px(xrange).*pz_x(z,xrange));
            return
            function ret ¼ px_z(x,z)
             ret ¼ pz_x(z,x).*px(x)./pz(z);
            return


            3.1.1  MMSE estimation


            The solution based on the quadratic cost function (3.6) is called the
            minimum mean square error estimator, also called the minimum vari-
            ance estimator for reasons that will become clear in a moment. Sub-
            stitution of (3.6) and (3.9) in (3.10) gives:


                                      Z
                                               T
                                         x
                                                 x
                   ^ x x MMSE ðzÞ¼ argmin  ð^ x   xÞ ð^ x   xÞpðxjzÞdx  ð3:12Þ
                                 ^ x x  x
            Differentiating the function between braces with respect to ^ x (see Appen-
                                                                x
            dix B.4), and equating this result to zero yields a system of M linear
            equations, the solution of which is:
                                        Z
                             ^ x x MMSE ðzÞ¼  xpðxjzÞdx ¼ E½xjzŠ       ð3:13Þ
                                         x
   60   61   62   63   64   65   66   67   68   69   70