Page 203 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 203
192 FEATURE EXTRACTION AND SELECTION
The inequality is called the Bhattacharyya upper bound. A more com-
pact notation of it is achieved with the so-called Bhattacharyya distance.
This performance measure is defined as:
Z
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J BHAT ¼ ln pðzj! 1 Þpðzj! 2 Þdz ð6:14Þ
z
With that, the Bhattacharyya upper bound simplifies to:
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E min Pð! 1 ÞPð! 2 Þ expð J BHAT Þ ð6:15Þ
The bound can be made more tight if inequality (6.11) is replaced with
s 1 s
the more general inequality minfa, bg a b . This last inequality
holds true for any s, a and b in the interval [0, 1]. The inequality leads
to the Chernoff distance, defined as:
Z
s
J ðsÞ¼ ln p ðzj! 1 Þp 1 s ðzj! 2 Þdz with: 0 s 1 ð6:16Þ
C
z
Application of the Chernoff distance in a derivation similar to (6.12)
yields:
s 1 s
E min Pð! 1 Þ Pð! 2 Þ expð J ðsÞÞ for any s 2½0; 1 ð6:17Þ
C
The so-called Chernoff bound encompasses the Bhattacharyya upper
bound. In fact, for s ¼ 0:5 the Chernoff distance and the Bhattacharyya
distance are equal: J BHAT ¼ J (0:5).
C
There also exists a lower bound based on the Bhattacharyya distance.
This bound is expressed as:
1 h p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi i
1 1 4Pð! 1 ÞPð! 2 Þ expð 2J BHAT Þ E min ð6:18Þ
2
A further simplification occurs when we specify the conditional
probability densities. An important application of the Chernoff and
Bhattacharyya distance is the Gaussian case. Suppose that these densities
have class-dependent expectation vectors m and covariance matrices C k ,
k