Page 103 - Compact Numerical Methods For Computers
P. 103

92                Compact numerical methods for computers

                             has a lower triangle


                                                         -1  2
                                                         -1  0   3
                                                         -1  0  1   4
                                                         -1 0 1 2 5


                             which gives the Choleski factor
                                                       1
                                                      -1    1
                                                       -1   -1   1
                                                       -1  -1   -1   1
                                                       -1  -1   -1  -1   1.








                             Example 7.2. Solving least-squares problems via the normal equations

                             Using the data in example 3.2, it is straightforward to form the matrix B from the
                             last four columns of table 3.1 together with a column of ones. The lower triangle
                                 T
                             of B B is then (via a Hewlett-Packard 9830 in 12 decimal digit arithmetic)
                                            18926823
                                              6359705 2164379
                                            10985647 3734131 6445437
                                             3344971 1166559 2008683 659226
                                               14709       5147      8859    2926 13


                             Note that, despite the warnings of chapter 5, means have not been subtracted, since
                             the program is designed to perform least-squares computations when a constant
                             (column of ones) is not included. This is usually called regression through the
                             origin in a statistical context. The Choleski factor L is computed as

                              4350·496868
                              1461·834175     165·5893864
                              2525·147663     258·3731371   48·05831416
                               768·8710282    257·2450797   14·66763457 40·90441964
                                  3·380993125   1·235276666   0·048499519  0·194896363   0·051383414
   98   99   100   101   102   103   104   105   106   107   108