Page 134 - Compact Numerical Methods For Computers
P. 134

Real symmetric matrices                    123
                      TABLE 10.1. Maximum absolute residual element R and maximum absolute inner product P between
                      normalised eigenvectors for eigensolutions of order n = 10 real symmetric matrices. All programs in
                                                                            -22
                                     BASIC on a Data General NOVA. Machine precision = 2 .
                                                          Algorithm 14 type  Algorithm 13 type
                                              Rutishauser  Jacobi  Jacobi    with      with
                                     Rutishauser with Nash  which  using    equation  equation
                        Matrix         Jacobi  formulae   orders  symmetry   (10.27)  (10.20)

                      Hilbert    R   7·26E-7   5·76E-6   4·82E-6  6·29E-6   6·68E-6  7·15E-6
                                 P    0        8·64E-7   1·13E-6  1·10E-6   2·32E-6  2·32E-6
                      Ding Dong  R   2·32E-6   2·86E-6   8·86E-6  1·08E-5   5·36E-6  1·54E-5
                                 P    0        5·36E-7   1·43E-6  1·19E-6   1·24E-6  1·24E-6
                      Moler      R    1·74E-5  3·62E-5   6·34E-5  1·01E-4   3·91E-5  9·46E-5
                                 P    1·94E-7  8·64E-7   8·05E-7  8·94E-7   2·21E-6  2·21E-6
                      Frank      R   2·29E-5   5·53E-5   8·96E-5  1·25E-4   5·72E-5  9·72E-5
                                 P   2·09E-7   6·85E-7   1·07E-6  8·57E-7   1·66E-6  1·66E-6
                      Bordered   R    1·79E-6  1·91E-6   6·20E-6  2·05E-5   1·43E-6  1·91E-6
                                 P   5·34E-9   5·96E-7   9·98E-7  1·40E-6   5·54E-7  5·54E-7
                      Diagonal   R    0        0         0        0         0        0
                                 P    0        0         0        0         0        0
                      W+         R   2·32E-6   4·59E-6   2·45E-5  2·01E-5   9·16E-6  1·43E-5
                                 P    1·79E-6  1·26E-6   1·88E-6  1·91E-6   1·75E-6  1·75E-6
                      W -        R    1·94E-6  8·58E-6   1·63E-5  2·86E-5   1·35E-5  2·00E-5
                                 P   4·77E-7   6·26E-7   7·97E-7  5·41E-7   2·10E-6  2·10E-6
                      Ones       R    4·65E-6  1·06E-6  1·06E-5   5·05E-5   2·43E-5   l·l9E-5
                                 P    0        3·65E-7   9·92E-7  1·04E-3   9·89E-7  9·89E-7


                                                     2      T         2
                                          (E  – Q ) = c (E  – w Aw)/(1 + c ) .         (10.30)
                                            jj  j      jj
                                                                                      f
                      Thus the error has been squared in the sense that the deviation of x j  from f j  is of
                                                                2
                      order c, while that of Q j  from E jj  is of order c . Since c is less than unity, this
                      implies that the Rayleigh quotient is in some way ‘closer’ to the eigenvalue than
                      the vector is to an eigenvector.
                        Unfortunately, to take advantage of the Rayleigh quotient (and residual calcu-
                      lation) it is necessary to keep a copy of the original matrix in the memory or
                      perform some backing store manipulations. A comparison of results for algorithm
                      13 using formulae (10.20) and (10.27) are given in table 10.1.

                      Algorithm 13. Eigensolutions of a real symmetric matrix via the singular-value
                      decomposition
                        Procedure evsvd(n: integer; {order of matrix eigenproblem}
                                         var A,V : matrix; {matrix and eigenvectors}
                                         initev: boolean; {switch -- if TRUE eigenvectors
                                         are initialized to a unit matrix of order n}
   129   130   131   132   133   134   135   136   137   138   139