Page 285 - Compact Numerical Methods For Computers
P. 285

272               Compact numerical methods for computers
                            Complex matrix,                       Deletion of observations in least-squares, 64
                              eigensolutions of, 1 10             Delta,
                            Complex systems of linear equations, 82  Kronecker, 3 1, 73, 119
                            Components,                           Dense matrix, 20, 23
                              principal, 40, 46                   Derivative evaluation count, 217
                            Computability of a function, 153      Derivatives of a function, 149, 187, 210
                            Computations,                           approximation by differences, 21, 217
                              statistical, 66                       in minimisation, 143
                            Computer,                             De-scaling,
                              small, 3                              of nonlinear least-squares problem, 223
                            Conjugacy of search directions, 186, 188, 197,  of nonlinear minimisation, 231
                               244,245                            Descent methods for function minimisation, 186
                            Conjugate gradients, 153, 186, 197, 223, 228, 232,  Diagonal matrix, 254
                               233                                Diagonalisation of a real symmetric matrix, 126
                              in linear algebra, 234              Difference,
                            Constrained optimisation, 3, 218, 221   replacement of derivative, 21
                            Constraints, 143                      Differential equations,
                              equality, 221                         ordinary, 20
                              independent, 221                    Digit cancellation, 55
                              inequality, 221                     Ding Dong matrix, 122, 253
                            Contraction of simplex, 168, 170      Direct method for linear equations, 72
                            Convergence,                          Direct search methods for function minimisation
                             criteria for, 5, 15                      182
                              of inverse iteration, 105           Dixon, L. C., 154, 182, 223, 225
                              of Nelder-Mead search, 180          Doolittle method, 75, 80
                              of power method, 103                Double precision, 9, 14, 81, 83, 91
                            Convergence test, 159, 171, 180, 242  Dow Jones index, 77
                              for inverse iteration, 108
                            Convex function, 208                  E (notation), 17
                            Corrected R 2  statistic, 45          Eason, E. D., 182
                            Cost of computations, 1, 3            Eberlein, P., 110, 117
                            Cox, M., 133                          ECLIPSE, 52, 96, 128, 153, 156, 159
                            Cross-products matrix, 49, 66         Effect of Jacobi rotations, 126
                            Crout method, 75, 80                  Eigenproblem,
                              for complex equations, 83             generalised, 104
                            Cubic interpolation, 15 1               total or complete, 119
                            Cubic inverse interpolation, 159      Eigenproblem of a real symmetric matrix,
                            Cubic-parabola problem, 232              comparison of methods, 133
                            Cunningham, J., 138,141               Eigensolutions, 28, 31
                            Cycle or sweep, 35, 49                  by singular-value decomposition, 123
                            Cyclic Jacobi algorithm, 127            of a complex matrix, 117
                            Cyclic re-ordering, 98                  of a real symmetric matrix, 119
                                                                  Eigenvalue, 28, 135
                            Dahlquist, G., 70, 75, 80, 81, 197      degenerate, 103
                            Data General computers, see NOVA or   Eigenvalue approximation in inverse iteration,
                               ECLIPSE                                108
                            Data points, 142                      Eigenvalue decomposition of matrix, 135
                            Davies, 182                           Eigenvalue problem,
                            Davies, Swann and Campey method, 182    matrix or algebraic, 102
                            Decomposition,                        Eigenvector, 28, 135
                              Choleski, 27                        Elementary matrices, 73
                              of a matrix, 26, 49                 Elementary operations on matrices, 73
                            Definiteness of a matrix, 22          Elimination method for linear equations, 72
                            Degenerate eigenvalues, 120, 125      Elimination of constraints, 22 1
                            Degrees of freedom, 46                  choice in, 223
   280   281   282   283   284   285   286   287   288   289   290