Page 64 - Compact Numerical Methods For Computers
P. 64

Handling larger problems                    53
                     the factors Q and R gives back the original matrix apart from very small errors
                     which are of the order of the machine precision multiplied by the magnitude of
                     the elements in question.

                     *RUN
                     TEST GIVENS - GIFT - ALG 3 DEC: 12 77
                     SIZE -- M= ? 3 N= ? 4
                     MTIN - INPUT M BY N MATRIX
                     ROW 1 : ? 1 ? 2 ? 3 ? 4
                     ROW 2 : ? 5 ? 6 ? 7 ? 8
                     ROW 3 : ? 9 ? 10 ? 11 ? 12

                     ORIGINAL A MATRIX
                     ROW 1 :         1             2              3             4
                     ROW 2 :         5             6             7              8
                     HOW 3 :         9             10             11            12
                      GIVENS TRIANGULARIZATION DEC: 12 77
                        Q MATRIX
                      ROW 1 :        1             0              0
                      ROW 2 :        0             1              0
                      ROW 3 :        0             0              1
                      J= 1   K= 2   A[J,J]= 1   A[K,J]= 5
                        A MATRIX
                      ROW 1 :        5.09902       6.27572        7.45242       8.62912
                      ROW 2 :       -1.19209E-07  -.784466       -1.56893      -2.3534
                      ROW 3 :        9             10             11            12
                        Q MATRIX
                      ROW 1 :        .196116      -.980581        0
                      ROW 2 :        .980581       .l96116        0
                      ROW 3 :        0             0              1
                      J = 1  K= 3   A[J,J]= 5.09902   A[K,J]= 9
                        A MATRIX
                     ROW 1 :         10.3441       11.7942        13.2443       14.6944
                     ROW 2 :        -1.19209E-07  -.784466       -1.56893      -2.3534
                     ROW 3 :         0            -.530862       -1.06172      -1.59258
                        Q MATRIX
                      ROW 1 :        9.66738E-02  -.980581       -.170634
                     ROW 2 :         .483369        .196116      -.853168
                      ROW 3 :        .870063       0              .492941
                      J= 2  K= 3    A[J,J]=-.784466   A[K,J]=-.530862
                      FINAL A MATRIX
                      ROW 1 :        10.3441       11.7942        13.2443       14.6944
                     ROW 2 :         9.87278E-08   .947208        1.89441       2.84162
                     ROW 3 :        -6.68l09E-08   0             -9.53674E-07  -1.90735E-06

                     FINAL Q MATRIX
                      ROW 1 :        9.66738E-02   .907738      -.40825
                      ROW 2 :        .483369       .315737        .816498
                      ROW 3 :        .870063       .276269       -.4408249
                     RECOMBINATION
                      ROW 1 :        1             2.00001        3.00001       4.00001
                      ROW 2 :        5.00001       6.00002        7.00002       8.00002
                      ROW 3 :        9.00001       10             11            12
   59   60   61   62   63   64   65   66   67   68   69