Page 182 - Complementarity and Variational Inequalities in Electronics
P. 182

The Nonregular Dynamical System Chapter | 5 173


                           with

                                                          0  −1
                                                    A =
                                                          k   h
                           and
                                                         2
                                                                       4
                                             (∀(x 1 ,x 2 ) ∈ R ) :  (x 1 ,x 2 ) = x .
                                                                       2
                           Let us also consider the closed convex set
                                                              2
                                               K ={(x 1 ,x 2 ) ∈ R : x 1 ≥ 0}.

                           We set
                                                                  1      1
                                                     2               2     2
                                         (∀ (x 1 ,x 2 ) ∈ R ) : V(x 1 ,x 2 ) = x +  x .
                                                                           2
                                                                    1
                                                                  2     2k
                           We check that both assumptions of Corollary 12 are satisfied. Indeed,
                                                                        1
                                                     2
                                          (∀ (x 1 ,x 2 ) ∈ R ) :∇V(x 1 ,x 2 ) = (x 1 , x 2 ).
                                                                        k
                           If x ∈ K, then
                                                            k − 1
                                              x −@ V(x) = (0,    x 2 ) ∈ K,
                                                              k
                           and thus
                                           ∀x ∈ K : ψ K (x) − ψ K (x −@ V(x)) = 0.

                           We obtain
                                                                        h  2  4  4
                                 
F(x),∇V(x) + ψ K (x) − ψ K (x −@ V(x)) =  x + x ≥ 0.
                                                                                2
                                                                          2
                                                                        k     k
                           Here
                                                       h  2  4  4
                                  E(F,ψ K ,V ) ={x ∈ K :  x + x = 0}={(x 1 ,0);x 1 ≥ 0}.
                                                               2
                                                         2
                                                       k    k
                           Let z = (z 1 ,0) ∈ E(F,ψ K ,V ). We claim that if γ(z) ⊂ E(F,ψ K ,V ), then
                           necessarily z 1 = 0. Indeed, suppose that γ(z) ⊂ E(F,ψ K ,V ) and set x(·) =
                                           dx
                           x(·,t 0 ,x 0 ), x (·) =  (·,t 0 ,x 0 ). From the dynamics in E(F,ψ K ,V ) we have
                                           dt
                                x (t)(v 1 − x 1 (t)) + kx 1 (t)v 2 ≥ 0, ∀v 1 ≥ 0,v 2 ∈ R, a.e. t ≥ t 0 .  (5.58)

                                 1
                           Setting v 1 = x 1 (t) in (5.58), we get
                                             kx 1 (t)v 2 ≥ 0,∀v 2 ∈ R, a.e. t ≥ t 0 .  (5.59)
   177   178   179   180   181   182   183   184   185   186   187