Page 76 - Complementarity and Variational Inequalities in Electronics
P. 76

A Variational Inequality Theory Chapter | 4 67


                           For example, the matrix

                                                     ⎛             ⎞
                                                        −1   −10
                                                     ⎜
                                                 M = ⎝ 1           ⎟
                                                             −10 ⎠
                                                         0   0   0
                           is weakly positive semidefinite since σ(M) ={−1 − i,−1 + i,0}.

                           4.2.14 Proper Convex Functions

                                          n
                           We denote by  (R ;R ∪{+∞}) the set of proper convex lower semicontinuous
                                        n
                           functions   : R → R ∪{+∞} with closed domain, that is,
                                     n
                                                           n
                                  (R ;R ∪{+∞}) ={  ∈   0 (R ;R ∪{+∞}) : D( ) = D( )}.
                                                                             n
                           Example 24. Let K be a nonempty closed convex subset of R . Then
                                                         n
                                                   K ∈  (R ;R ∪{+∞}).
                                               n                              n
                              We denote by D (R ;R ∪{+∞}) the set of functions   : R → R ∪{+∞}
                           of “diagonal” structure:
                                           n
                                     (∀x ∈ R ) :  (x) =   1 (x 1 ) +   2 (x 2 ) + ··· +   n (x n ),  (4.7)
                           where, for all 1 ≤ i ≤ n,wehave

                                                         n
                                                   i ∈  (R ;R ∪{+∞})                   (4.8)
                           and
                                                        n
                                           (∀λ ≥ 0, ∀x ∈ R ) :   i (λx) = λ  i (x).    (4.9)
                           It is clear that

                                      n                n                 n
                                 D (R ;R ∪{+∞}) ⊂  (R ;R ∪{+∞}) ⊂   0 (R ;R ∪{+∞}).
                           Example 25. Let α 1 ≥ 0,α 2 ≥ 0,...,α n ≥ 0. We set
                                             n
                                      (∀x ∈ R ) :  (x) = α 1 |x 1 |+ α 2 |x 2 | + ··· + α n |x n |.
                                                n
                           It is clear that   ∈ D (R ;R ∪{+∞}).
                           Example 26. Let K 1 ,K 2 ,...,K N be nonempty closed convex subsets of R.
                           Then
                                     n
                              (∀x ∈ R ) :   K 1 ×K 2 ×···×K n  (x) =   K 1  (x 1 ) +   K 2  (x 2 ) + ··· +   K n (x n ).
                                                              n
                                                       ∈ D (R ;R ∪{+∞}).
                           It is thus clear that   K 1 ×K 2 ×···×K n
   71   72   73   74   75   76   77   78   79   80   81