Page 218 - Computational Colour Science Using MATLAB
P. 218
Index
adapted white 86 CMCCAT2000 82, 90–91, 96, 100
additive primaries 5, 8 CIEDE2000 equation 10, 49, 57, 75, 79
adopted white 86 CMC equation 10, 49, 55, 71, 79
ANLAB colour space 50 colorimeter (split-field) 5
ANSI IT8.7 charts 128 colour
artificial neural networks 111, 130, 136, 143, appearance 7–8, 54, 81–82, 85, 104, 164
156 appearance model 81, 92
constancy 10, 81, 164
communication 11
basis functions 166, 176 difference 9–10, 49, 52
brightness 82 difference test data 78
memory 82
Colour Measurement Committee 10, 55
Cartesian coordinates 50, 65 colourfulness 82
channel balancing 136 continuous-tone printer 155
chroma 82 corresponding colours 82
chromatic adaptation 81, 83 CRT spatial independence 115
degree of 86, 99, 103 CRT channel independence 115
transform 81
chromatic sharpening 85
CIE System daylight simulators 29
chromaticity coordinates 8, 35 device calibration 111
chromaticity diagram 35, 46 device characterization 111, 115
CIE 1976 UCS 51, 63 device linearization 113, 128, 145
CIELAB 9, 50–52, 79, 92 device-independent representation 114, 129,
CIELUV 9, 50–52 146
Colour-matching functions 6, 28 dot gain 142, 145
illuminants 29, 44, 45
illuminant white points 45 eigenvectors 167
limitations of 8–9
standard observer 8, 28 Fourier analysis 185
tristimulus values 5–7, 27
tristimulus values (computing) 41 gamma 112–114
CIE94 equation 49, 56, 73, 79 gamut 8, 36
CIECAM97s 82, 93–96 GOG model 111–114
CIECAT94 82, 86–88 Grassman’s law 8
CIECAM97s 82, 93–96 grey world assumption 170
CMCCAT97 82, 89–90, 96, 104
CMCCAM2000 82, 96 half-tone printers 142, 150
Computational Colour Science Using MATLAB. By Stephen Westland and Caterina Ripamonti.
& 2004 John Wiley & Sons, Ltd: ISBN 0 470 84562 7