Page 378 - Computational Fluid Dynamics for Engineers
P. 378

Appendix  12A                                                         369



                    gu                            q 2
                    2      I      g|M  + 7-i)[?4-5(giM+ 9iM)]
                                          (
                  QU + P
           E  =
                    guv                         92 <73/9i
                L{E t+p)u\     [{q 4  + (7 -  1)[94 -  ^(92/91 + 9|/9i)]}92/gi  J  , J 2 A  ^
                    ^     1    [                   93                  n
                    g m ;                       9293/^1
           F  =
                    2
                  ^  + P          93M + (7 1 ) [ 9 4 -  5(92/9i+9i/9l)]
                                            -
                L(^t  +p)u J   L{94 + (7 -  1)[94 -  5(92/91 + 9l/9l)]}93/9i
         The  Jacobian  matrices  of  convective  terms  are  obtained  by  differenting  E  and
         F  respect  to Q.

                                                      1              0      0
                            ^  2  +  ^  2          (3 -  7)u      (1 —  7)1;  7  —  1
                                                                    u       0
                                           2
                                                              2
                       " 7 ^  + (7 -  l)u(u 2  +  v )  7 ^  -  { -^(3u 2  +  v )  - ( 7 -  l)uv  7u
                                 0               0                1         0
                                —m;              v              ix          0
          B
                               2
               dQ            ^M  +  ^ ^ V     — (7 —  \)u     —(7 — 3)v     7  —  1
                              ( 7 _  1 ) V ( M 2  ^  _  yE±  _  trzil( u2  3t; 2)
                       _ 7£r»  +       +    _ ( 7  ^ u v           +      7 V
                                                                           (12A.2)
         Similarly,  the  Jacobian  matrices P, R, R x, M,N and  N y are  obtained  from

                                     'dVi'
             [^] + tfx] =
                           d(  Q  dx .9Q X.
                                           n                          0     0
                                            u                         0     0
                         Vx               ~\
             [P]  + [Rx]  =
                                                                       1    0
                                                  2
                                        2
                            L (I -1?>  - (i - i?>  - & f   (I - )*  a - &)v £.
                              -
                                                               £
                                                                           (12A.3)
                  dVi
            [R]
                  dQ x
                                   0                          0     0
                                                                           (12A.4)
                                   4*                         0     0
            [R]   l*
                                                              1     0
                                          2
                                             £
                      -(I - £W - (i - £)«  - f    (! - £)* (i - £)* £ J
   373   374   375   376   377   378   379   380   381   382   383