Page 384 - Computational Fluid Dynamics for Engineers
P. 384

Problems                                                              375



         Problems

         12-1.  Derive  the  Jacobian  matrices  A  and  B  in  Eq.  (12A.2).
         12-2.  Derive  the  Jacobian  matrices  P,  i?,  R x  in  Eqs.  (12A.3-4).

         12-3.  Derive  the  Jacobian  matrices  M,  N,  N y  in  Eqs.  (12A.5-6).
         12-4.  Use the  MacCormack  method  to  solve the  compressible  laminar  flow  over
         a  flat  plate.  Use  Eq.  (2.2.30).  Take  Mach  number  M^  =  2,  L  =  2,  H  =  0.002,
                 6
         RL  =  10 ,  Uoo =  160,  Qoo  =  1 and  T ^  =  1


                  u  = u oo  v = 0  p  = p oo  7  = 7^
                                             T
         u=u oo
         v=0
         P =  P«                              H = 0.02
                                             A
         T  = T

                             L = 2
                                                   Fig.  P I 2 . 1 .  Boundary  conditions  on
                             dy                    the  flow  over  flat  plate.



         12-5.  Repeat  Problem  12-4  with  M^  =  4.

         12-6.  Apply  the  Beam-Warming  method  to  P12-4.
         12-7.  Apply  the  finite  volume  method  to  P12-4.
         12-8.  Apply  the  MacCormack  method  to  the  driven  cavity  problem  (described
         inPll-4).

         12-9.  Apply  the  Beam-Warming  method  to  the  driven  cavity  problem.
         12-10.  Apply  the  finite  volume  method  to  the  driven  cavity  problem.
   379   380   381   382   383   384   385   386   387   388   389