Page 384 - Computational Fluid Dynamics for Engineers
P. 384
Problems 375
Problems
12-1. Derive the Jacobian matrices A and B in Eq. (12A.2).
12-2. Derive the Jacobian matrices P, i?, R x in Eqs. (12A.3-4).
12-3. Derive the Jacobian matrices M, N, N y in Eqs. (12A.5-6).
12-4. Use the MacCormack method to solve the compressible laminar flow over
a flat plate. Use Eq. (2.2.30). Take Mach number M^ = 2, L = 2, H = 0.002,
6
RL = 10 , Uoo = 160, Qoo = 1 and T ^ = 1
u = u oo v = 0 p = p oo 7 = 7^
T
u=u oo
v=0
P = P« H = 0.02
A
T = T
L = 2
Fig. P I 2 . 1 . Boundary conditions on
dy the flow over flat plate.
12-5. Repeat Problem 12-4 with M^ = 4.
12-6. Apply the Beam-Warming method to P12-4.
12-7. Apply the finite volume method to P12-4.
12-8. Apply the MacCormack method to the driven cavity problem (described
inPll-4).
12-9. Apply the Beam-Warming method to the driven cavity problem.
12-10. Apply the finite volume method to the driven cavity problem.