Page 52 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 52
38 Computational Modeling in Biomedical Engineering and Medical Physics
Peyret, R., Taylor, T.D., 1983. Computational Methods for Fluid Flow. Springer Verlag, New York.
Purcell, E.M., 1984. 2nd ed. Electricity and Magnetism, Berkeley Physics Course, Vol. 2. McGraw-Hill.
Roetzel, W., Xuan, Y., 1998. Transient response of the human limb to an external stimulus. Int. J. Heat.
Mass. Transf. 41, 229 239.
Ruhdel, I., 2007. Überarbeitung der EU Richtlinie 86/609/EWG Ergebnisse der Internetbefragungen der
Europäischen Kommission, Akademie für Tierschutz des Deutschen Tierschutzbundes, Neubiberg,
Deutschland (in German).
Schroeder, W., Wolff, I., 1994. The origin of spurious modes in numerical solutions of electromagnetic
field eigenvalue problems. IEEE Trans. Microw. Theory Tech. 42 (4), 644 653.
Shibeshi, S.S., Collins, W.E., 2005. The rheology of blood flow in a branched arterial system. Appl.
Rheol. 15 (6), 398 405.
Snell, O., 1982. Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen
Fähigkeiten. Arch. Psychiatr. 23 (2), 436 446.
Stuchly, M.A., Stuchly, S.S., 1980. Dielectric properties of biological substances—tabulated. J. Microw.
Power 15 (1), 19 25.
Takahashi, N., Nakata, T., Fujiwara, K., Imai, T., 1992. Investigation of effectiveness of edge elements.
IEEE Trans. Magnetics 28 (2), 1619 1622.
Tikhonov, A.N., Samarskii, A.A., 1963. Equations of Mathematical Physics. Pergamon Press Ltd,
Oxford, England.
Uahabi, K.L., Atounti, M., 2015. Applications of fractals in medicine. Ann. Univ. Craiova Maths.
Comput. Sci. Ser. 42 (1), 167 174.
Valvano, J.W., 2010. Tissue thermal properties and perfusion. In: Welch, A., van Gemert, M. (Eds.),
Optical Thermal Response of Laser Irradiated Tissue. Springer, Dordrecht.
Vetterling, W.T., Teukolsky, S.A., Press, W.H., Flannery, B.P., 1997. Numerical Recipes in Fortran 90,
2nd ed. Cambridge University Press.
Visser, K.R., 1992. Electric conductivity of stationary and flowing human blood at low frequencies.
Med. Biol. Eng. Comput 30, 636 640.
Warburg, E.G., 1881. Magnetic investigations. IEEE Ann. Phys. 13, 141 164.
Webb, J.P., 1993. Edge elements and what they can do for you. IEEE Trans. Magnetics 29 (2), 1460 1465.
Weinbaum, S., Jiji, L.M., 1985. A new simplified bioheat equation for the effect of blood flow on local
average tissue temperature. ASME J. Biomech. Eng. 107, 131 139.
Weinbaum, S., Jiji, L.M., Lemons, D.E., 1984. Theory and experiment for the effect of vascular micro-
structure on surface tissue heat transfer. Part I. Anatomical foundation and model conceptualization.
ASME J. Biomech. Eng. 106, 321 330.
Wulff, W., 1974. The energy conservation equation for living tissue. IEEE Trans. Biomed., Eng. BME
21, 494 495.
Zolfaghari, A., Maerefat, M., 2010. Bioheat transfer. In: Dos Santos Bernardes, M.A. (Ed.).
Developments in Heat Transfer. IntechOpen, pp. 153 170 (Chapter 9). ISBN: 978-953-307-569-3.
Available from: ,www.intechopen.com., ,https://doi.org/10.5772/22616..
A.1 Scalar and Vector Fields
The laws of Physics, the boundary conditions, and the initial conditions that make the phys-
ical model yield the mathematical model that has to be solved to find the unknowns of the
problem—the physical quantities of interest (e.g., temperature, velocity, pressure, electric
potential, magnetic potential, species concentration). Qualitatively the physical quantities
may be scalar and vector, and the mathematical physics is concerned with the solution of
the problems where they occur.