Page 48 - Discrete Mathematics and Its Applications
P. 48

1.3 Propositional Equivalences  27



                                                      TABLE 5 A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) Are Logically
                                                      Equivalent.
                                                       p     q     r     q ∧ r    p ∨ (q ∧ r)  p ∨ q    p ∨ r    (p ∨ q) ∧ (p ∨ r)

                                                       T     T     T      T          T           T        T            T
                                                       T     T     F      F          T           T        T            T
                                                       T     F     T      F          T           T        T            T
                                                       T     F     F      F          T           T        T            T
                                                       F     T     T      T          T           T        T            T
                                                       F     T     F      F          F           T        F            F
                                                       F     F     T      F          F           F        T            F
                                                       F     F     F      F          F           F        F            F

                                      EXAMPLE 4      Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This is the distributive
                                                     law of disjunction over conjunction.

                                                     Solution: We construct the truth table for these compound propositions in Table 5. Because
                                                     the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these compound propositions are
                                                     logically equivalent.                                                          ▲

                                 The identities in Table 6
                                                        Table 6 contains some important equivalences. In these equivalences, T denotes the com-
                                 are a special case of
                                 Boolean algebra identities  pound proposition that is always true and F denotes the compound proposition that is always
                                 found in Table 5 of
                                 Section 12.1. See Table 1
                                 in Section 2.2 for   TABLE 6 Logical Equivalences.
                                 analogous set identities.
                                                       Equivalence                  Name
                                                       p ∧ T ≡ p                    Identity laws
                                                       p ∨ F ≡ p
                                                       p ∨ T ≡ T                    Domination laws
                                                       p ∧ F ≡ F
                                                       p ∨ p ≡ p                    Idempotent laws
                                                       p ∧ p ≡ p
                                                       ¬(¬p) ≡ p                    Double negation law

                                                       p ∨ q ≡ q ∨ p                Commutative laws
                                                       p ∧ q ≡ q ∧ p

                                                       (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)    Associative laws
                                                       (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

                                                       p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)  Distributive laws
                                                       p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

                                                       ¬(p ∧ q) ≡¬p ∨¬q             De Morgan’s laws
                                                       ¬(p ∨ q) ≡¬p ∧¬q

                                                       p ∨ (p ∧ q) ≡ p              Absorption laws
                                                       p ∧ (p ∨ q) ≡ p
                                                       p ∨¬p ≡ T                    Negation laws
                                                       p ∧¬p ≡ F
   43   44   45   46   47   48   49   50   51   52   53