Page 6 - Discrete Mathematics and Its Applications
P. 6

Contents v

                                                     10  Graphs ............................................................ 641

                                                     10.1 Graphs and Graph Models .................................................... 641
                                                     10.2 Graph Terminology and Special Types of Graphs................................651
                                                     10.3 Representing Graphs and Graph Isomorphism .................................. 668
                                                     10.4 Connectivity ................................................................ 678
                                                     10.5 Euler and Hamilton Paths.....................................................693
                                                     10.6 Shortest-Path Problems.......................................................707
                                                     10.7 Planar Graphs ............................................................... 718
                                                     10.8 Graph Coloring..............................................................727
                                                          End-of-Chapter Material ..................................................... 735


                                                     11  Trees...............................................................745
                                                     11.1 Introduction to Trees ......................................................... 745
                                                     11.2 Applications of Trees.........................................................757
                                                     11.3 Tree Traversal ............................................................... 772
                                                     11.4 Spanning Trees .............................................................. 785
                                                     11.5 Minimum Spanning Trees .................................................... 797
                                                          End-of-Chapter Material ..................................................... 803


                                                     12  Boolean Algebra ................................................... 811
                                                     12.1 Boolean Functions ...........................................................811
                                                     12.2 Representing Boolean Functions .............................................. 819
                                                     12.3 Logic Gates ................................................................. 822
                                                     12.4 Minimization of Circuits ..................................................... 828
                                                          End-of-Chapter Material ..................................................... 843


                                                     13  Modeling Computation ........................................... 847

                                                     13.1 Languages and Grammars .................................................... 847
                                                     13.2 Finite-State Machines with Output.............................................858
                                                     13.3 Finite-State Machines with No Output ......................................... 865
                                                     13.4 Language Recognition ....................................................... 878
                                                     13.5 Turing Machines.............................................................888
                                                          End-of-Chapter Material ..................................................... 899


                                                         Appendixes ....................................................... A-1
                                                     1    Axioms for the Real Numbers and the Positive Integers ............................ 1
                                                     2    Exponential and Logarithmic Functions .......................................... 7
                                                     3    Pseudocode .................................................................. 11

                                                     Suggested Readings B-1
                                                     Answers to Odd-Numbered Exercises S-1
                                                     Photo Credits C-1
                                                     Index of Biographies I-1
                                                     Index I-2
   1   2   3   4   5   6   7   8   9   10   11