Page 511 - Decision Making Applications in Modern Power Systems
P. 511

Pattern-recognition methods for decision-making Chapter | 17  471


             66. K. Sekar, N.K. Mohanty, Data mining-based high impedance fault detection using mathe-
                 matical morphology, Comput. Electr. Eng. 69 (2018) 129 141.
             67. P.J. Mooney, N. Fischer, Application guidelines for power swing detection on transmission
                 systems,  Power  Systems  Conference:  Advanced  Metering,  Protection,  Control,
                 Communication, and Distributed Resources, 2006. PS’06, IEEE, 2006, 159 168.
             68. L. Zou, Q. Zhao, X. Lin, P. Liu, Improved phase selector for unbalanced faults during
                 power swings using morphological technique, IEEE Trans. Power Delivery 21 (4) (2006)
                 1847 1855.
             69. M.J. Reddy, D.K. Mohanta, Adaptive-neuro-fuzzy inference system approach for transmis-
                 sion line fault classification and location incorporating effects of power swings, IET Gener.
                 Transm. Distrib. 2 (2) (2008) 235 244.
             70. H.K. Zadeh, L. Zuyi, A novel power swing blocking scheme using adaptive neuro-fuzzy
                 inference system, Electr. Power Syst. Res. 78 (7) (2008) 1138 1146.
             71. A. Esmaeilian, S. Astinfeshan, A novel power swing detection algorithm using adaptive
                 neuro fuzzy technique, 2011 International Conference on Electrical Engineering and
                 Informatics (ICEEI), IEEE, 2011, 1 6.
             72. A.F. Abidin, A. Mohamed, H. Shareef, Intelligent detection of unstable power swing for
                 correct distance relay operation using S-transform and neural networks, Expert Syst. Appl.
                 38 (12) (2011) 14969 14975.
             73. K. Seethalekshmi, S.N. Singh, S.C. Srivastava, A classification approach using support
                 vector machines to prevent distance relay maloperation under power swing and voltage
                 instability, IEEE Trans. Power Delivery 27 (3) (2012) 1124 1133.
                 ˙
             74. I.G. Tekdemir, B. Alboyacı, Improvement of power swing detection performance of a dis-
                 tance relay by using k-NN algorithm, 2015 9th International Conference on Electrical and
                 Electronics Engineering (ELECO), IEEE, 2015 541 545.
             75. A.F. Abidin, A. Mohamed, H. Shareef, Power swing and voltage collapse identification
                 schemes for correct distance relay operation in power system, J. Cent. South Univ. 20 (4)
                 (2013) 988 1000.
             76. N.G. Chothani, B.R. Bhalja, U.B. Parikh, New support vector machine-based digital relay-
                 ing scheme for discrimination between power swing and fault, IET Gener. Transm. Distrib.
                 8 (1) (2014) 17 25.
             77. Z. Moravej, J.D. Ashkezari, M. Pazoki, An effective combined method for symmetrical faults
                 identification during power swing, Int. J. Electr. Power Energy Syst. 64 (2015) 24 34.
             78. R. Dubey, S.R. Samantaray, B.K. Panigrahi, V.G. Venkoparao, Data-mining model based
                 adaptive protection scheme to enhance distance relay performance during power swing, Int.
                 J. Electr. Power Energy Syst. 81 (2016) 361 370.
             79. A. Swetapadma, A. Yadav, Data-mining-based fault during power swing identification in
                 power transmission system, IET Sci., Meas. Technol. 10 (2) (2016) 130 139.
             80. M. Daryalal, M. Sarlak, Fast fault detection scheme for series-compensated lines during
                 power swing, Int. J. Electr. Power Energy Syst. 92 (2017) 230 244.
             81. V. Gurevich, Digital Protective Relays: Problems and Solutions, CRC Press, 2016.
             82. A. Abdelmoumene, H. Bentarzi, A review on protective relays’ developments and trends,
                 J. Energy South. Afr. 25 (2) (2014) 91 95.
             83. Y. Zhang, Mitigating Future Blackouts via Smart Relays: A Machine Learning Approach
                 (Ph.D. Diss.), Carnegie Mellon University, 2010.
             84. J.-A. Jiang, C.-L. Chuang, Y.-C. Wang, C.-H. Hung, J.-Y. Wang, C.-H. Lee, et al., A
                 hybrid framework for fault detection, classification, and location—Part II: Implementation
                 and test results, IEEE Trans. Power Delivery 26 (3) (2011) 1999 2008.
   506   507   508   509   510   511   512   513   514   515   516