Page 496 - Design and Operation of Heat Exchangers and their Networks
P. 496

Appendix  479


                        for i=1:1: nx1
                             t2(2, i, 1) = t2(3, i, ny1);
                        end
                        n=n+ 1;
                        fprintf("%d, %e\n", n, smax);
                     end
                     fprintf("smax =%e, thm =%f, 1-thm =%f, tcm =%f\n", ...
                         smax, thm, 1-thm, tcm);

                  case-15 % BA_1,5
                      % analytical
                      nu_1 = special_function_nu_(aA, bA);
                      nu_2 = special_function_nu_(aB, bB);
                      K1 = special_function_K(bA);
                      K2 = special_function_K(bB);
                      epsilon_h = 1 - nu_1 ∗ nu_2 / (1 - bB ∗ K1 ∗ K2 ...
                           ∗ (1 - nu_1 ∗ nu_2) / (K1 + phi ∗ K2));
                      % numerical
                      t1(:, :, :) = 1;
                      t2(:, :, :) = 0;
                      smax = 100;
                      n=0;
                      while (abs(smax) > eps && n < 100)
                          smax = 0;
                          ntuh = NTUh(1);
                          ntuc = NTUc(1);
                          th(:, :) = t1(1, :, :);
                          tc(:, :) = t2(1, :, :);

                          [th, tc, thm, tcm] = crossflow_mixed_unmixed ...
                               (ntuh, ntuc, nx, ny, th, tc, A, T, D);
                          for i =1:1:nx1
                               for j=1:1: ny1
                                    s = th(i, j) - t1(1, i, j);
                                    if (abs(s) > abs(smax))
                                          smax = s;
                                    end
                                    t1(1, i, j) = t1(1, i, j) + e ∗ s;
   491   492   493   494   495   496   497   498   499   500   501