Page 527 - Design and Operation of Heat Exchangers and their Networks
P. 527

510   Appendix


                   for j=1:1:ny1
                        th(i, j) = T(1);
                   end
                   for j=2:1:ny1
                        tc(i, j) = T(j);
                   end
              end
              thm = th(nx1, 1);
              tcm = (tc(1, ny1) + tc(nx1, ny1)) / 2;
              for i=2: 1:nx
                   tcm = tcm + tc(i, ny1);
              end
              tcm = tcm / nx;
          end

          function [th, tc, thm, tcm] = crossflow_unmixed_unmixed ...
              (ntuh, ntuc, nx, ny, th, tc)
              nx1 = nx + 1;
              ny1 = ny + 1;
              dx = ntuh / nx;
              dy = ntuc / ny;
              a12 = - dx / 2;
              a11 =1-a12;%1+ dx/2
              a21 = - dy / 2;
              a22 =1-a21;%1+ dy/2
              d = a11 ∗ a22 - a12 ∗ a21;
              ch1 = (1 + a12) / a11; % (1-dx/2)/(1 + dx/2)
              ch2 = a12 / a11;    % -dx/2/(1 + dx/2)
              cc1 = (1 + a21) / a22; % (1-dy/2)/(1 + dy/2)
              cc2 = a21 / a22;    % -dy/2/(1 + dy/2)
              ch11 = (1 + a12) ∗ a22 / d;
              ch12 = a12 ∗ a22 / d;
              ch21 = a21 ∗ a12 / d;
              ch22 = (1 + a21) ∗ a12 / d;
              cc11 = (1 + a21) ∗ a11 / d;
              cc12 = a21 ∗ a11 / d;
              cc21 = a12 ∗ a21 / d;
              cc22 = (1 + a12) ∗ a21 / d;
   522   523   524   525   526   527   528   529   530   531   532