Page 527 - Design and Operation of Heat Exchangers and their Networks
P. 527
510 Appendix
for j=1:1:ny1
th(i, j) = T(1);
end
for j=2:1:ny1
tc(i, j) = T(j);
end
end
thm = th(nx1, 1);
tcm = (tc(1, ny1) + tc(nx1, ny1)) / 2;
for i=2: 1:nx
tcm = tcm + tc(i, ny1);
end
tcm = tcm / nx;
end
function [th, tc, thm, tcm] = crossflow_unmixed_unmixed ...
(ntuh, ntuc, nx, ny, th, tc)
nx1 = nx + 1;
ny1 = ny + 1;
dx = ntuh / nx;
dy = ntuc / ny;
a12 = - dx / 2;
a11 =1-a12;%1+ dx/2
a21 = - dy / 2;
a22 =1-a21;%1+ dy/2
d = a11 ∗ a22 - a12 ∗ a21;
ch1 = (1 + a12) / a11; % (1-dx/2)/(1 + dx/2)
ch2 = a12 / a11; % -dx/2/(1 + dx/2)
cc1 = (1 + a21) / a22; % (1-dy/2)/(1 + dy/2)
cc2 = a21 / a22; % -dy/2/(1 + dy/2)
ch11 = (1 + a12) ∗ a22 / d;
ch12 = a12 ∗ a22 / d;
ch21 = a21 ∗ a12 / d;
ch22 = (1 + a21) ∗ a12 / d;
cc11 = (1 + a21) ∗ a11 / d;
cc12 = a21 ∗ a11 / d;
cc21 = a12 ∗ a21 / d;
cc22 = (1 + a12) ∗ a21 / d;

