Page 20 - Determinants and Their Applications in Mathematical Physics
P. 20

1.4 The Product of Two Determinants — 1  5

          Comparing this result with (1.2.5),
                                          n

                                  |a ij | n =  a ik A ik            (1.3.14)
                                         k=1
          which is the expansion of |a ij | n by elements from row i and their cofactors.
            From (1.3.1) and noting (1.3.5),
                 x 1 x 2 ··· x n =(y 1 + a 1j e j )(y 2 + a 2j e j ) ··· (y n + a nj e j )

                           = a 1j e j y 2 y 3 ··· y n + a 2j y 1 e j y 3 ··· y n
                             + ··· + a nj y 1 y 2 ··· y n−1 e j
                           =(a 1j A 1j + a 2j A 2j + ··· + a nj A nj )e 1 e 2 ··· e n

                               n

                           =     a kj A kj e 1 e 2 ··· e n .        (1.3.15)
                              k=1
          Comparing this relation with (1.2.5),
                                          n

                                  |a ij | n =  a kj A kj            (1.3.16)
                                         k=1
          which is the expansion of |a ij | n by elements from column j and their
          cofactors.



          1.4 The Product of Two Determinants — 1

          Put
                                         n

                                   x i =   a ik y k ,
                                        k=1
                                         n

                                   y k =   b kj e j .
                                        j=1
          Then,
                            x 1 x 2 ··· x n = |a ij | n y 1 y 2 ··· y n ,
                            y 1 y 2 ··· y n = |b ij | n e 1 e 2 ··· e n .
          Hence,

                           x 1 x 2 ··· x n = |a ij | n |b ij | n e 1 e 2 ··· e n .  (1.4.1)
          But,

                                      n     n

                                 x i =  a ik   b kj e j
                                     k=1   j=1
   15   16   17   18   19   20   21   22   23   24   25