Page 245 - Determinants and Their Applications in Mathematical Physics
P. 245

230   5. Further Determinant Theory

          Hence,
                                          (5)    (5)    (5)
                                        A      A      A


                                         12,12   12,15
                  B r+4  B r+3                          12,45
                               B r+2       (5)   (5)    (5)
                                       =   A   A      A       .      (5.8.8)
                  B r+3  B r+2
                                         15,12   15,15  15,45
                               B r+1


                                         (5)     (5)    (5)
                  B r+2  B r+1
                                        A      A      A
                                B r
                                         45,12   45,15  45,45
          Denote the determinant on the right by V 3 . Then, V 3 is not a standard
          third-order Jacobi determinant which is of the form
                     |A (n) |  or |A (n)  |  p = i, j, k,  q = r, s, t.
                                   gp,hq 3 ,
                       pq 3
          However, V 3 can be regarded as a generalized Jacobi determinant in which
          the elements have vector parameters:
                                           (5)
                                    V 3 = |A uv 3 ,                  (5.8.9)
                                              |
                                                 (5)
          where u and v =[1, 2], [1, 5], and [4, 5], and A uv  is interpreted as a second
          cofactor of A 5 . It may be verified that
                                (5)    (5)            (5) 2
                          V 3 = A 125;125 A 145;145 A 5 + φ 4 (A 15  )  (5.8.10)
          and that if
                                           (4)
                                    V 3 = |A uv 3 ,                 (5.8.11)
                                              |
          where u and v =[1, 2], [1, 4], and [3, 4], then
                                 (4)    (4)         (4) 2
                           V 3 = A     A     A 4 +(A   ) .          (5.8.12)
                                 124;124  134;134   14
          These results suggest the following conjecture:
          Conjecture. If
                                           (n)
                                    V 3 = |A uv 3 ,
                                              |
          where u and v =[1, 2], [1,n], and [n − 1,n], then
                      (n)    (n)                (n)             (n) 2
                V 3 = A     A            A n + A             (A   ) .
                      12n;12n  1,n−1,n;1,n−1,n  12,n−1,n;12,n−1,n  1n
          Exercise. If
                                           (4)
                                     V 3 = |A uv |,
          where

                              u =[1, 2], [1, 3], and [2, 4],
                              v =[1, 2], [1, 3], and [2, 3].

          prove that
                                   V 3 = −φ 5 φ 6 A 4 .
   240   241   242   243   244   245   246   247   248   249   250