Page 257 - Determinants and Their Applications in Mathematical Physics
P. 257

242    6. Applications of Determinants in Mathematical Physics

           Since det P =1,
                            1     φ + ψ 2  −ψ
                                2
                       −1
                     P    =                  ,
                            φ    −ψ      1
                      ∂P     1
                          =        −φ ρ      2  φψ ρ − ψφ ρ  2  ,
                      ∂ρ    φ 2  φψ ρ − ψφ ρ  φ φ ρ +2φψψ ρ − ψ φ ρ
                  ∂P   −1   M
                     P    =   ,
                   ∂ρ       φ 2
                  ∂P   −1   N
                     P    =   ,
                   ∂z       φ 2
         where

                                −(φφ ρ + ψψ ρ )
                       M =   (φ − ψ )ψ ρ − 2φψφ ρ  φφ ρ + ψψ ρ
                                                     ψ ρ
                                    2
                               2
         and N is the matrix obtained from M by replacing φ ρ by φ z and ψ ρ by ψ z .
           The equation above (6.2.6) can now be expressed in the form
                         M    2
                           −   (φ ρ M + φ z N)+(M ρ + N z ) = 0     (6.2.7)
                         ρ    φ
         where
                                    2   2                             
                                  φ(φ + φ )
                           −         ρ   z             {φ ρ ψ ρ + φ z ψ z }
                             +ψ(φ ρ ψ ρ + φ z ψ z )                   
          φ ρ M + φ z N =      2  2                        2   2        ,
                          (φ − ψ )(φ ρ ψ ρ + φ z ψ z )  φ(φ + φ )     
                                                            ρ   z
                                      2
                                          2
                               −2φψ(φ + φ )          +ψ(φ ρ ψ ρ + φ z ψ z )
                                      ρ   z
         M ρ + N z
                     φ(φ ρρ + φ zz)+ ψ(ψ ρρ + ψ zz)
                   /                        0
                                                                             
                  −        2   2   2    2                  {ψ ρρ + ψ zz}
          =   /  2   2  +φ ρ + φ z + ψ ρ + ψ z  0/                         0 
                (φ − ψ )(ψ ρρ + ψ zz) − 2φψ(φ ρρ + φ zz)  φ(φ ρρ + φ zz)+ ψ(ψ ρρ + ψ zz)
                                                          2
                                    2
                                        2
                                                                   2
                                                               2
                               2
                           2
                      −2ψ(φ ρ + φ z + ψ ρ + ψ z )       +φ ρ + φ z + ψ ρ + ψ z 2
         The Einstein equations can now be expressed in the form

                                    f 11  f 12
                                             =0,
                                    f 21  f 22
         where
               1    	      1
         f 12 =                      − 2(φ ρ ψ ρ + φ z ψ z ) =0,
                           ρ
               φ  φ ψ ρρ + ψ ρ + ψ zz
                                1             2    2    2   2

                                           − φ − φ + ψ + ψ     =0,
                                ρ             ρ    z   ρ    z
         f 11 = −ψf 12 − φ φ ρρ + φ ρ + φ zz

                                         1
                 2   2                             − φ − φ + ψ + ψ  2  =0,
                                                                2
                                                           2
                                                      2
                                         ρ            ρ    z    ρ   z
         f 21 =(φ − ψ )f 12 − 2ψ φ φ ρρ + φ ρ + φ zz
         f 22 = −f 11 =0,
   252   253   254   255   256   257   258   259   260   261   262