Page 31 - Determinants and Their Applications in Mathematical Physics
P. 31

3



          Intermediate Determinant Theory
























          3.1 Cyclic Dislocations and Generalizations

          Define column vectors C j and C as follows:
                                      ∗
                                      j

                                                    T
                              C j = a 1j a 2j a 3j ··· a nj
                                                      T
                              C = a  ∗  a ∗  a ··· a ∗
                                            ∗
                                ∗
                                j    1j  2j  3j   nj
          where
                                     n

                               a =     (1 − δ ir )λ ir a rj ,
                                ∗
                                ij
                                    r=1
                                   ∗
          that is, the element a ∗  in C is a linear combination of all the elements
                             ij    j
          in C j except a ij , the coefficients λ ir being independent of j but otherwise
          arbitrary.
          Theorem 3.1.
                              n


                                 C 1 C 2 ··· C ··· C n =0.
                                           ∗

                                           j
                             j=1
          Proof.
                                          n

                               ∗             ∗

                      C 1 C 2 ··· C ··· C n =
                               j            a A ij
                                             ij
                                         i=1
                                          n      n

                                       =    A ij   (1 − δ ir )λ ir a rj .
                                         i=1    r=1
   26   27   28   29   30   31   32   33   34   35   36