Page 193 - Distillation theory
P. 193

P1: JPJ/FFX  P2: FCH/FFX  QC: FCH/FFX  T1: FCH
            0521820928c05  CB644-Petlyuk-v1                                                      June 11, 2004  20:15





                                References                                                        167

                                Franklin, N. L. (1986). Counterflow Cascades: Part I. Chem. Eng. Res. Des., 64,
                                  56–66.
                                Franklin, N. L. (1988a). Counterflow Cascades: Part II. Chem. Eng. Res. Des., 66,
                                  47–64.
                                Franklin, N. L. (1988b). The Theory of Multicomponent Countercurrent Cascades.
                                  Chem. Eng. Res. Des., 66, 65–74.
                                Franklin, N. L., & Forsyth, J. S. (1953). The Interpretation of Minimum Reflux
                                  Conditions in Multicomponent Distillation. Trans. Inst. Chem. Eng., 31, 363–
                                  88.
                                Hausen, H. (1934). Einfluss des Argons auf die Rektifikation der Luft. Forsc. Geb.
                                  Ingenieurwes,6,290–97 (Germ.).
                                Hausen, H. (1935). Rektifikation von Dreistoffgemischen - Insbesondere von
                                  Sauerstoff-Stickstoff-Luft. Forsch. Geb. Ingenieurwes,6,9–22 (Germ.).
                                Hausen, H. (1952). Rektifikation Idealer Dreistoffgemische. Z. Angew. Phys.,4,
                                  41–51 (Germ.).
                                Holland, C. D. (1963). Multicomponent Distillation. New York: Prentice Hall.
                                Julka, V., & Doherty, M. F. (1990). Geometric Behavior and Minimum Flows for
                                  Nonideal Multicomponent Distillation. Chem. Eng. Sci., 45, 1801–22.
                                Kiva, V. N. (1976). Qualitative Analysis of Distillation by Means of Weak Mathe-
                                  matical Model. In Physical-Chemical Investigation of Mass-Transfer Processes.
                                  Leningrad: VNIISK (Rus.).
                                Koehler, J., Aguirre, P., & Blass, E. (1991). Minimum Reflux Calculations for
                                  Nonideal Mixtures Using the Reversible Distillation Model. Chem. Eng. Sci.,
                                  46, 3007–21.
                                Kondrat’ev, A. A., Frolova, L. N., Serafimov, L. A., & Hasanov, Z. K. (1977). Pecu-
                                  liarities of Distillation of Azeotropic Mixtures with Intersection of Boundaries
                                  of Distillation Regions. Theor. Found. Chem. Eng., 11, 907–12.
                                Lee, E. S. (1974). Estimation of Minimum Reflux in Distillation and Multipoint
                                  Boundary Value Problems. Chem. Eng. Sci., 29, 871–5.
                                Levy, S. G., & Doherty, M. F. (1986). A Simple Exact Method for Calculating
                                  Tangent Pinch Points in Multicomponent Nonideal Mixtures by Bifurcation
                                  Theory. Chem. Eng. Sci., 41, 3155–60.
                                Levy, S. G., Van Dongen, D. B., & Doherty, M. F. (1985). Design and Synthe-
                                  sis of Homogenous Azeotropic Distillation. 2. Minimum reflux Calculations
                                  for Nonideal and Azeotropic Columns. Ind. Eng. Chem. Fundam., 24, 463–
                                  74.
                                McCabe, W. L., & Thiele, E. W. (1925). Graphical Design of Fractionating
                                  Columns. Ind. Eng. Chem., 17, 606–11.
                                McDonough, J. A., & Holland, C. D. (1962). Figure Separations This New Way–
                                  Part 9 – How to Figure Minimum Reflux. Hydrocarbon Process. Petrol. Refin.,
                                  41, 153–60.
                                Petlyuk, F. B. (1978). Rectification of Zeotropic, Azeotropic and Continuous Mix-
                                  tures in Simple and Complex Infinite Columns at Finite Reflux. Theor. Found.
                                  Chem. Eng., 12, 671–8.
                                Petlyuk, F. B. (1998). Simple Predicting Methods for Feasible Sharp Separations
                                  of Azeotropic Mixtures. Theor. Found. Chem. Eng., 32, 245–53.
                                Petlyuk, F. B., Avet’yan, V. S., & Platonov, V. M. (1968). Research of Multicom-
                                  ponent Distillation at Minimum Reflux. Theor. Found. Chem. Eng.,2,155–
                                  68.
   188   189   190   191   192   193   194   195   196   197   198