Page 193 - Distillation theory
P. 193
P1: JPJ/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH
0521820928c05 CB644-Petlyuk-v1 June 11, 2004 20:15
References 167
Franklin, N. L. (1986). Counterflow Cascades: Part I. Chem. Eng. Res. Des., 64,
56–66.
Franklin, N. L. (1988a). Counterflow Cascades: Part II. Chem. Eng. Res. Des., 66,
47–64.
Franklin, N. L. (1988b). The Theory of Multicomponent Countercurrent Cascades.
Chem. Eng. Res. Des., 66, 65–74.
Franklin, N. L., & Forsyth, J. S. (1953). The Interpretation of Minimum Reflux
Conditions in Multicomponent Distillation. Trans. Inst. Chem. Eng., 31, 363–
88.
Hausen, H. (1934). Einfluss des Argons auf die Rektifikation der Luft. Forsc. Geb.
Ingenieurwes,6,290–97 (Germ.).
Hausen, H. (1935). Rektifikation von Dreistoffgemischen - Insbesondere von
Sauerstoff-Stickstoff-Luft. Forsch. Geb. Ingenieurwes,6,9–22 (Germ.).
Hausen, H. (1952). Rektifikation Idealer Dreistoffgemische. Z. Angew. Phys.,4,
41–51 (Germ.).
Holland, C. D. (1963). Multicomponent Distillation. New York: Prentice Hall.
Julka, V., & Doherty, M. F. (1990). Geometric Behavior and Minimum Flows for
Nonideal Multicomponent Distillation. Chem. Eng. Sci., 45, 1801–22.
Kiva, V. N. (1976). Qualitative Analysis of Distillation by Means of Weak Mathe-
matical Model. In Physical-Chemical Investigation of Mass-Transfer Processes.
Leningrad: VNIISK (Rus.).
Koehler, J., Aguirre, P., & Blass, E. (1991). Minimum Reflux Calculations for
Nonideal Mixtures Using the Reversible Distillation Model. Chem. Eng. Sci.,
46, 3007–21.
Kondrat’ev, A. A., Frolova, L. N., Serafimov, L. A., & Hasanov, Z. K. (1977). Pecu-
liarities of Distillation of Azeotropic Mixtures with Intersection of Boundaries
of Distillation Regions. Theor. Found. Chem. Eng., 11, 907–12.
Lee, E. S. (1974). Estimation of Minimum Reflux in Distillation and Multipoint
Boundary Value Problems. Chem. Eng. Sci., 29, 871–5.
Levy, S. G., & Doherty, M. F. (1986). A Simple Exact Method for Calculating
Tangent Pinch Points in Multicomponent Nonideal Mixtures by Bifurcation
Theory. Chem. Eng. Sci., 41, 3155–60.
Levy, S. G., Van Dongen, D. B., & Doherty, M. F. (1985). Design and Synthe-
sis of Homogenous Azeotropic Distillation. 2. Minimum reflux Calculations
for Nonideal and Azeotropic Columns. Ind. Eng. Chem. Fundam., 24, 463–
74.
McCabe, W. L., & Thiele, E. W. (1925). Graphical Design of Fractionating
Columns. Ind. Eng. Chem., 17, 606–11.
McDonough, J. A., & Holland, C. D. (1962). Figure Separations This New Way–
Part 9 – How to Figure Minimum Reflux. Hydrocarbon Process. Petrol. Refin.,
41, 153–60.
Petlyuk, F. B. (1978). Rectification of Zeotropic, Azeotropic and Continuous Mix-
tures in Simple and Complex Infinite Columns at Finite Reflux. Theor. Found.
Chem. Eng., 12, 671–8.
Petlyuk, F. B. (1998). Simple Predicting Methods for Feasible Sharp Separations
of Azeotropic Mixtures. Theor. Found. Chem. Eng., 32, 245–53.
Petlyuk, F. B., Avet’yan, V. S., & Platonov, V. M. (1968). Research of Multicom-
ponent Distillation at Minimum Reflux. Theor. Found. Chem. Eng.,2,155–
68.