Page 218 - Electromagnetics
P. 218

By integration
                                              1     ∞  dω     ∞  dω
                                                                        ˜
                                                               ˜

                                       w e (t) =               F(ω − ω 0 )F(ω − ω 0 ) ·
                                              8  −∞ 2π  −∞ 2π
                                                          j(ω−ω )t            j(ω −ω)t

                                                                   ˇ

                                               ˇ
                                                                     ˇ ∗
                                                  ˇ ∗
                                            ·  E · E g (ω 0 )e  + E · E g (ω 0 )e  +



                                                 ˇ
                                               ˇ
                                                                ˇ ∗ ˇ ∗
                                            + E · E˜ (ω 0 )e  j(ω+ω )t  + E · E ˜ (ω 0 )e − j(ω+ω )t  .
                          Our last step is to compute the time-average value of w e and let α → 0. Applying
                        (4.56) we find
                                   1     ∞  dω     ∞  dω
                                                             ˜
                                                    ˜

                              w e  =                F(ω − ω 0 )F(ω − ω 0 ) ·
                                   8  −∞ 2π  −∞ 2π
                                                       π                                    π

                                                                      ˇ
                                ˇ
                                                                         ˇ
                                                              ˇ ∗ ˇ ∗

                                   ˇ ∗
                             · 2E · E g (ω 0 ) sinc [ω − ω ]  + E · E + E · E ˜ (ω 0 ) sinc [ω + ω ]

                                                      ω 0                                   ω 0
                        where sinc(x) is defined in (A.9) and we note that sinc(−x) = sinc(x). Finally we let
                                                    ˜
                        α → 0 and use (4.53) to replace F(ω) by a δ-function. Upon integration these δ-functions
                        set ω = ω 0 and ω = ω 0 . Since sinc(0) = 1 and sinc(2π) = 0, the time-average stored

                        electric energy density becomes simply

                                                          1    ∂[ω˜ ]
                                                            ˇ 2
                                                     w e  =  |E|        .                      (4.59)
                                                          4     ∂ω
                                                                    ω=ω 0
                        Similarly,

                                                          1    ∂[ω ˜µ]
                                                            ˇ 2
                                                    w m  =  |H|          .
                                                          4     ∂ω
                                                                     ω=ω 0
                          This approach can also be applied to anisotropic materials to give

                                                        1    ∂[ω ˜ ¯ ]
                                                                        ˇ
                                                          ˇ ∗
                                                   w e  =  E ·         · E,                    (4.60)
                                                        4      ∂ω
                                                                   ω=ω 0
                                                        1     ∂[ω ˜ ¯µ]
                                                                         ˇ
                                                          ˇ ∗
                                                  w m  =  H ·           · H.                   (4.61)
                                                        4      ∂ω
                                                                    ω=ω 0
                        See Collin [39] for details. For the case of a lossless, nondispersive material where the
                        constitutive parameters are frequency independent, we can use (4.49) and (A.76) to
                        simplify this and obtain
                                                        1          1
                                                                     ˇ
                                                               ˇ
                                                                        ˇ ∗
                                                         ˇ ∗
                                                  w e  =  E · ¯  · E =  E · D ,                (4.62)
                                                        4          4
                                                        1           1
                                                                ˇ
                                                                      ˇ
                                                                         ˇ ∗
                                                         ˇ ∗
                                                  w m  =  H · ¯µ · H =  H · B ,                (4.63)
                                                        4           4
                        in the anisotropic case and
                                                          1       1
                                                                    ˇ
                                                             ˇ 2
                                                                      ˇ ∗
                                                    w e  =   |E| =  E · D ,                    (4.64)
                                                          4       4
                                                          1        1
                                                                    ˇ
                                                             ˇ 2
                                                                       ˇ ∗
                                                    w m  =  µ|H| =  H · B ,                    (4.65)
                                                          4        4
                                                ˇ ˇ ˇ
                                                        ˇ
                        in the isotropic case. Here E, D, B, H are all phasor fields as defined by (4.54).
                        © 2001 by CRC Press LLC
   213   214   215   216   217   218   219   220   221   222   223