Page 179 -
P. 179

and where

                                                    φ
                                          ˜
                                                            ˜
                                                         ˜
                                          V  =  A e  j tot .  = V +  V                     (6.68)
                                           tot .  tot .  1   2
                             Preparatory Exercise

                             Pb. 6.35 Write the analytical expression for A tot.  and φ  in Eq. (6.68) as func-
                                                                            tot.
                             tions of the amplitudes and phases of signals 1 and 2.


                              The above result can, of course, be generalized to the sum of many signals;
                             specifically:

                                                               N
                                                           ) =
                                        V   =  A  cos(ω t + φ tot. ∑ A cos(ω t + φ  )
                                         tot.  tot.                n         n
                                                               n=1
                                                                                           (6.69)
                                                  N                      N       
                                            =  Re ∑  A exp( j t +ω  jφ  ) =  Re e jt ∑ A e  j n 
                                                                                  φ
                                                                          ω
                                                    n           n            n   
                                                 n  =1                   n=1     
                             and

                                                               N
                                                                  ˜
                                                             =
                                                         V ˜  . ∑ V                        (6.70)
                                                          tot      n
                                                               n=1
                                                         ⇒ A   = V ˜                       (6.71)
                                                            tot.  tot.

                                                                 ˜
                                                        φ   =  arg( V )                    (6.72)
                                                         tot.     tot.
                             That is, the resultant field can be obtained through the simple operation of
                             adding all the complex numbers (phasors) that represent each of the individ-
                             ual signals.


                             Example 6.8
                                                                             φ
                             Given ten signals, the phasor of each of the form  Ae  j n  ,  where the ampli-
                                                                           n
                                                                              1
                             tude and phase for each have the functional forms  A =   and φ  =  n ,   write
                                                                                         2
                                                                          n          n
                                                                              n
                             a MATLAB program to compute the resultant sum phasor.
                             © 2001 by CRC Press LLC
   174   175   176   177   178   179   180   181   182   183   184