Page 121 - Elements of Distribution Theory
P. 121

P1: JZP
            052184472Xc04  CUNY148/Severini  May 24, 2005  2:39





                                      4.3 Laplace Transforms and Moment-Generating Functions  107

                        Hence,

                                                            n                n+1

                                                                          |hx|
                                                                  j

                                         exp{itx} exp{ihx}−  (ihx) /j!  ≤
                                                                          (n + 1)!
                                                           j=0
                        and

                                              n   j  
                        n+1
                                                     ∞
                                                h                           |h|  γ n+1
                                                          j
                                   ϕ X (t + h) −       (ix) exp{itx} dF X (x)  ≤     ,
                                                 j!                          (n + 1)!

                                             j=0    −∞
                        where ϕ X denotes the characteristic function of X.
                          Note that

                                               ∞                      (k)
                                                    k
                                                 (ix) exp{itx} dF X (x) = ϕ (t).
                                                                      X
                                              −∞
                        Hence,

                                                n   j           n+1

                                                   h         |h|
                                                      ( j)        γ n+1
                                     ϕ X (t + h) −   ϕ (t)  ≤         , n = 1, 2,....
                                                      X
                                                   j!         (n + 1)!
                                                j=0

                        It follows that
                                                        ∞   j
                                                           h  ( j)
                                             ϕ X (t + h) =   ϕ (t), |h| <δ.                 (4.2)
                                                              X
                                                           j!
                                                        j=0
                          Applying the same argument to Y shows that ϕ Y , the characteristic function of Y, satisfies
                                                        ∞   j
                                                           h  ( j)
                                             ϕ Y (t + h) =   ϕ (t), |h| <δ.                 (4.3)
                                                              Y
                                                           j!
                                                        j=0
                          Taking t = 0 and using the fact that
                                               (k)       k      k     (k)
                                             ϕ (0) = E(X ) = E(Y ) = ϕ (0),
                                               X                     Y
                        it follows that
                                                  ϕ X (t) = ϕ Y (t), |t| <δ
                        and also that
                                            (k)     (k)
                                           ϕ (t) = ϕ (t), k = 1, 2,..., |t| <δ.
                                            X       Y
                          Taking t = δ/2in (4.2) and (4.3) shows that
                                                        ∞   j
                                                           h  ( j)
                                           ϕ X (δ/2 + h) =   ϕ (δ/2), |h| <δ
                                                              X
                                                           j!
                                                        j=0
                        and
                                                        ∞   j
                                                           h  ( j)
                                           ϕ Y (δ/2 + h) =   ϕ (δ/2), |h| <δ.
                                                              Y
                                                           j!
                                                        j=0
                        Since
                                              (k)       (k)
                                             ϕ (δ/2) = ϕ (δ/2), k = 1, 2,...,
                                              X         Y
   116   117   118   119   120   121   122   123   124   125   126