Page 214 -
P. 214

§1. Jacobi q-Parametrization: Application to Real Curves  191

        which for q = e 2πiτ  becomes, by (1.3),

                                     (2πi) 2k     2k−1 mn
                           2ζ(2k) + 2            n   q
                                    (2k − 1)!
                                            m,n<1
                             s                                         s

        where ζ(s) =     (1/n ) is the Riemann zeta function. For σ s (n) =  d this
                      1≤n                                          d|n
        formula takes the more precise form, called the q-expansion of the Eisenstein series,
                                         (2πi)  2k          n
                       G 2k (τ) = 2ζ(2k) + 2        σ 2k−1 (n)q
                                        (2k − 1)!
                                                1≤n
                                         (2πi)  2k    n 2k−1 n
                                                        q
                             = 2ζ(2k) + 2                  .
                                        (2k − 1)!   1 − q n
                                                1≤n
        We introduce E 2k (τ) by G 2k (τ) = 2ζ(2k)E 2k (τ).The cases2k = 4and 6are
        considered in greater detail using
                         π 4     π 4               π 6     π 6
                   ζ(4) =   =     2     and ζ(6) =     =  3     ,
                         90    2 · 3 · 5           945   3 · 5 · 7
        reference J.-P. Serre, Course in Arithmetic, p. 91. We have

                          π 4  2(2πi)  4       n
                  G 4 (τ) =  +            σ 3 (n)q
                          45      3!
                                       1≤n
                                                  ,        4
                               4
                          (2πi)                  n    (2πi)
                        =         1 + 240   σ 3 (n)q  =     E 4 (τ)
                           4
                          2 · 45                        720
                                         1≤n
                                    4
        hence, g 2 (τ) = 60G 4 (τ) = [(2πi) /12]E 4 (τ),and also
                      2π 6  2(2πi)  6       n
              G 6 (τ) =   +            σ s (n)q
                      945      5!
                                    1≤n
                                                  ,          6
                            6
                        (2πi) · 2                n    −(2πi) · 2
                    =−            1 − 504   σ 5 (n)q  =         E 6 (τ)
                                                         6 3
                          6
                         2 · 945                        2 3 5 · 7
                                         1≤n
                                         3 3
                                       6
        hence, g 3 (τ) = 140G 6 (τ) =−[(2πi) /2 3 ]E 6 (τ).
        (1.5) q-Expansions of Elliptic Functions. For q = e 2πiτ  and w = e 2πiτ  we have
        the following expansions using (1.4):
                   1           	      1            1
          ℘(z,τ) =   +                       −
                   z 2           (z − mτ − n) 2  mτ + n) 2
                       (m,n) =(0,0)
                         1          1          	      1            1

                =           2  − 2   2  +                   2  −       2
                      (z − n)       n            (z − mτ − n)  (mτ + n)
                   n             1≤n     m =0 n
   209   210   211   212   213   214   215   216   217   218   219