Page 406 -
P. 406

§11. Introduction to K3 Surfaces  381

        (11.8) Remark. For algebraic K3 surfaces 1 ≤ ρ(X) ≤ 20. In the case of the
                              4
                                  4
                                       4
                         4
        Fermat surface 0 = y + y + y + y we have ρ = 20 while ρ = 1 for the generic
                         0    1   2   3
        quadric surface. For generic complex K3 surfaces we have ρ = 0. The algebraic K3
        surfaces have hyperplane sections, hence there exist curves on the surface, but they
        are all homologous.
        (11.9) Remark. Every complex K3 surface has a K¨ ahler form. The Hodge data and
        the K¨ ahler form can be used to parameterize complex K3 surfaces. This is the Torelli
        theorem, and for further details see the book by Barth, Peters, and van de Ven [1980],
        Compact complex surfaces, Springer-Verlag, Ergebnisse der Mathematik und ihrer
        Grenzgebiete, 3 Folge, Band 4.
   401   402   403   404   405   406   407   408   409   410   411