Page 305 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 305
290 Principles and Methods
13. van Oss, C.J., Hydrophobic, hydrophilic and other interactions in epitope-paratope
binding. Molecular Immunology, 1995. 32(3): p. 199–211.
14. Fukushi, K., and T. Sato, Using a surface complexation model to predict the nature
and stability of nanoparticles. Environmental Science & Technology, 2005.
15. Andrievsky, G.V., et al., On the production of an aqueous colloidal solution of
fullerenes. Chemical Communications, 1995: p. 1281–1282.
16. Schwarzer, H.-C., and W. Peukert, Prediction of aggregation kinetics based on sur-
face properties of nanoparticles. Chemical Engineering Science, 2005. 60(1): p. 11–25.
17. Marinova, K.G., et al., Charging of oil-water interfaces due to spontaneous adsorp-
tion of hydroxyl ions. Langmuir, 1996. 12: p. 2045–2051.
18. Brant, J.A., et al., Comparison of electrokinetic properties of colloidal fullerenes (n-C 60 )
formed using two procedures. Environmental Science & Technology, 2005,
39(17):6343–6351.
19. Andrievsky, G.V., et al., Comparative analysis of two aqueous-colloidal solutions of
C 60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem. Phys.
Lett., 2002. 364: p. 8–17.
20. Prieve, D.C., and E. Ruckenstein, Rates of deposition of brownian particles calculated
by lumping interaction forces into a boundary condition. J. Colloid Interface Sci.,
1976. 57(3): p. 547–550.
21. Yaminsky, V.V.V., E.A., Hydrophobic hydration. Current Opinion in Colloid &
Interface Science, 2001. 6: p. 342–349.
22. Kobayashi, M., et al., Aggregation and charging of colloidal silica particles: effect of
particle size. Langmuir, 2005.
23. Guldi, D.M., and M. Prato, Excited-state properties of C 60 fullerene derivatives.
Accounts of Chemical Research, 2000. 33(10): p. 695–703.
24. Brunner, T.J., et al., In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos,
silica, and the effect of particle solubility. Environmental Science & Technology, 2006.
25. Lam, C.W., et al., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and
90 days after intratracheal installation. Toxicological Sciences, 2004. 77: p. 126–134.
26. Warheit, D.B., et al., Comparative pulmonary toxicity assessment of single-wall
carbon nanotubes in rates. Toxicological Sciences, 2004. 77: p. 117–125.
27. Hyning, D.L.V., W.G. Klemperer, and C.F. Zukoski, Characterization of colloidal
stability during precipitation reactions. Langmuir, 2001. 17: p. 3120–3127.
28. Bokare, A., and A. Patnaik, C 60 aggregate structure and geometry in nonpolar
oxylene. Journal of Physical Chemistry B, 2005. 109(1): p. 87–92.
29. Bulavin, L.A., et al., Self-organization C 60 nanoparticles in toluene solution. Journal
of Molecular Liquids, 2001. 93: p. 187–191.
30. Nath, S., H. Pal, and A.V. Sapre, Effect of solvent polarity on the aggregation of C 60 .
Chemical Physics Letters, 2000. 327: p. 143–148.
31. Nath, S., H. Pal, and A.V. Sapre, Effect of solvent polarity on the aggregation of fullerenes:
a comparison between C 60 and C 70 . Chemical Physics Letters, 2002. 360: p. 422–428.
32. Ying, Q., J. Marecek, and B. Chu, Slow aggregation of buckminsterfullerene (C 60 ) in
benzene solution. Chemical Physics Letters, 1994. 219: p. 214–218.
33. Deguchi, S., G.A. Rossitza, and K. Tsujii, Stable dispersions of fullerenes, C 60 and C 70
in water. Preparation and characterization. Langmuir, 2001. 17: p. 6013–6017.
34. Mchedlov-Petrossyan, N.O., V.K. Klochkov, and G.V. Andrievsky, Colloidal disper-
sions of fullerene C 60 in water: some properties and regularities of coagulation by elec-
trolytes. Journal of the American Chemical Society Faraday Transactions, 1997.
93(24): p. 4343–4346.
14
35. Scrivens, W.A. and J.M. Tour, Synthesis of C-labeled C 60 , its suspension in water,
and its uptake by human keratinocytes. Journal of the American Chemical Society,
1994. 116: p. 4517–4518.
36. Cheng, X., A.T. Kan, and M.B. Tomson, Naphthalene adsorption and desorption from
aqueous C 60 fullerene. Journal of Chemical and Engineering Data, 2004. 49: p. 675–683.
37. Saleh, N., et al., Absorbed triblock copolymers deliver reactive iron nanoparticles to
the oil/water interface. Nano Letters, 2005. 5(12): p. 2489–2494.
38. Newbury, R.W.e.P., Hydrologic determinants of aquatic insect habitat. Chapter 11,
in The Ecology of Aquatic Insects, V.H. Resh and D.M. Rosenberg, editors. 1984,
Praeger: New York. p. 323–357.