Page 305 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 305

290   Principles and Methods

         13. van Oss, C.J., Hydrophobic, hydrophilic and other interactions in epitope-paratope
            binding. Molecular Immunology, 1995. 32(3): p. 199–211.
         14. Fukushi, K., and T. Sato, Using a surface complexation model to predict the nature
            and stability of nanoparticles. Environmental Science & Technology, 2005.
         15. Andrievsky, G.V., et al., On the production of an aqueous colloidal solution of
            fullerenes. Chemical Communications, 1995: p. 1281–1282.
         16. Schwarzer, H.-C., and W. Peukert, Prediction of aggregation kinetics based on sur-
            face properties of nanoparticles. Chemical Engineering Science, 2005. 60(1): p. 11–25.
         17. Marinova, K.G., et al., Charging of oil-water interfaces due to spontaneous adsorp-
            tion of hydroxyl ions. Langmuir, 1996. 12: p. 2045–2051.
         18. Brant, J.A., et al., Comparison of electrokinetic properties of colloidal fullerenes (n-C 60 )
            formed using two procedures. Environmental Science & Technology, 2005,
            39(17):6343–6351.
         19. Andrievsky, G.V., et al., Comparative analysis of two aqueous-colloidal solutions of
            C 60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem. Phys.
            Lett., 2002. 364: p. 8–17.
         20. Prieve, D.C., and E. Ruckenstein, Rates of deposition of brownian particles calculated
            by lumping interaction forces into a boundary condition. J. Colloid Interface Sci.,
            1976. 57(3): p. 547–550.
         21. Yaminsky, V.V.V., E.A.,  Hydrophobic hydration. Current Opinion in Colloid &
            Interface Science, 2001. 6: p. 342–349.
         22. Kobayashi, M., et al., Aggregation and charging of colloidal silica particles: effect of
            particle size. Langmuir, 2005.
         23. Guldi, D.M., and M. Prato, Excited-state properties of C 60 fullerene derivatives.
            Accounts of Chemical Research, 2000. 33(10): p. 695–703.
         24. Brunner, T.J., et al., In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos,
            silica, and the effect of particle solubility. Environmental Science & Technology, 2006.
         25. Lam, C.W., et al., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and
            90 days after intratracheal installation. Toxicological Sciences, 2004. 77: p. 126–134.
         26. Warheit, D.B., et al., Comparative pulmonary toxicity assessment of single-wall
            carbon nanotubes in rates. Toxicological Sciences, 2004. 77: p. 117–125.
         27. Hyning, D.L.V., W.G. Klemperer, and C.F. Zukoski, Characterization of colloidal
            stability during precipitation reactions. Langmuir, 2001. 17: p. 3120–3127.
         28. Bokare, A., and A. Patnaik, C 60 aggregate structure and geometry in nonpolar
            oxylene. Journal of Physical Chemistry B, 2005. 109(1): p. 87–92.
         29. Bulavin, L.A., et al., Self-organization C 60 nanoparticles in toluene solution. Journal
            of Molecular Liquids, 2001. 93: p. 187–191.
         30. Nath, S., H. Pal, and A.V. Sapre, Effect of solvent polarity on the aggregation of C 60 .
            Chemical Physics Letters, 2000. 327: p. 143–148.
         31. Nath, S., H. Pal, and A.V. Sapre, Effect of solvent polarity on the aggregation of fullerenes:
            a comparison between C 60 and C 70 . Chemical Physics Letters, 2002. 360: p. 422–428.
         32. Ying, Q., J. Marecek, and B. Chu, Slow aggregation of buckminsterfullerene (C 60 ) in
            benzene solution. Chemical Physics Letters, 1994. 219: p. 214–218.
         33. Deguchi, S., G.A. Rossitza, and K. Tsujii, Stable dispersions of fullerenes, C 60 and C 70
            in water. Preparation and characterization. Langmuir, 2001. 17: p. 6013–6017.
         34. Mchedlov-Petrossyan, N.O., V.K. Klochkov, and G.V. Andrievsky, Colloidal disper-
            sions of fullerene C 60 in water: some properties and regularities of coagulation by elec-
            trolytes. Journal of the American Chemical Society Faraday Transactions, 1997.
            93(24): p. 4343–4346.
                                            14
         35. Scrivens, W.A. and J.M. Tour, Synthesis of  C-labeled C 60 , its suspension in water,
            and its uptake by human keratinocytes. Journal of the American Chemical Society,
            1994. 116: p. 4517–4518.
         36. Cheng, X., A.T. Kan, and M.B. Tomson, Naphthalene adsorption and desorption from
            aqueous C 60 fullerene. Journal of Chemical and Engineering Data, 2004. 49: p. 675–683.
         37. Saleh, N., et al., Absorbed triblock copolymers deliver reactive iron nanoparticles to
            the oil/water interface. Nano Letters, 2005. 5(12): p. 2489–2494.
         38. Newbury, R.W.e.P., Hydrologic determinants of aquatic insect habitat.  Chapter 11,
            in The Ecology of Aquatic Insects, V.H. Resh and D.M. Rosenberg, editors. 1984,
            Praeger: New York. p. 323–357.
   300   301   302   303   304   305   306   307   308   309   310