Page 466 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 466

Toxicological Impacts of Nanomaterials  443

          Baron, P. (2005) “Unusual inflammatory and fibrogenic plmonary responses to single-
          walled carbon nanotubes in mice,” Am. J. Physiology. Lung Cell. Molecular. Physiology.,
          289:L698–L708.
        Smart, S.K.. Cassady, A.I., Lu, G.Q., Martin, D.J. (2006) “The biocompatibility of carbon
          nanotubes,” Carbon, 44:1034–1047.
        Stringer, B.K., Imrich, A., and Kobzik, L. (1996) “Lung epithelial cells (A549) interaction
          with unopsonized environmental particulates: quantitation of particle-specific binding
          and IL-8 production,” Exp. Lung Res., 22:495–508.
        Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G.,
          Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E.
          (1996) “Crystalline ropes of metallic carbon nanotubes,” Science, 273:483–487.
        Tremblay, J.F. (2002) “Mitsubishi chemical aims at breakthrough,”  Chemical and
          Engineering News, 80:16–17.
        Tremblay, J.F. (2003) “Fullerenes by the ton,” Chem. & Eng. News, 81:13–14.
        Tsuchiya, T., Oguri, I., Yamakoshi, Y.N., and Miyata, N. (1996) “Novel harmful effects of
          [60]fullerene on mouse embryos in vitro and in vivo,”  Federation of Experimental
          Biology Letters, 393:139–145.
        Tsuchiya, T., Yamakoshi, Y.N., and Miyata, N. (1995) “A novel promoting action of fullerene
          C 60 on the chondrogenesis in rat embryonic limb bud cell culture system,” Biochemical.
          Biophysical. Research. Communications., 206:885–894.
        Tsuji, J.S., Maynard, A.D., Howard, P.C., James, J.T., Lam, C.-W., Warheit, D.B., and
          Santamaria, A.B. (2006) “Research strategies for safety evaluation of nanomaterials,
          Part IV: risk assessment of nanoparticles,” Toxicological Sciences 89(1):42–50.
        Ueng, T.H., Kang, J.J., Wang, H.W., Chen, Y.W., and Chiang, L.Y. (1997) “Suppression of
          microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative
          phosphorylation by fullerenol, a polyhydroxylated fullerene C 60 ,” Toxicol. Lett., 93:29–37.
        Wang, G., Zhang, J., and Murray, R. W. (2002) “DNA binding of an ethidium intercalator
          attached to a monolayer-protected gold cluster,” Analytical. Chemistry., 74:4320–4327.
        Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A.M., and Webb, T.R.
          (2004) “Comparative pulmonary toxicity assessment of single wall carbon nanotubes in
          rats,” Toxicological. Sciences., 77:117–125.
        Warheit, D.B., Webb, T.R., Sayes, C.M., Colvin, V.L., and Reed, K.L. (2006) “Pulmonary instil-
          lation studies with nanoscale TiO 2 rods and dots in rats: toxicity is not dependent upon
          particle size and surface area,” Toxicological. Sciences Tox. Sci., doi:10.1093/ toxsci/kfj140.
        Watson, A., Wu, Xingyong and Bruchez, M. (2003) “Lighting up cells with quantum dots,”
          BioTechniques, 34(2):296–303.
        Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C.A., Bengele, H.H., and Josephson,
          L. (1990) “Ultrasmall superparamagnetic iron oxide. characterization of a new class of
          contrast agents for MR imaging,” Radiology, 175:489–493.
        Weissleder, R., Stark, D.D., Engelstad, B.L,, Bacon, B.R., Compton, C.C., White, D.L.,
          Jacobs, P., and Lewis, J. (1989) “Superparamagnetic iron oxide: pharmacokinetics and
          toxicity,” Am. J. Roentgenology., 152:167–173.
        Weizmann, Y., Patolsky, F., and Willner, I. (2001) “Amplified detection of DNA and analy-
          sis of single base mismatches by the catalyzed deposition of gold on Au nanoparticles,”
          Analyst, 126:1502–1504.
        Wilhelm, C., Billotey, C., Roger, J., Pons, J.N., Bacri, J.-C., and Gazeau, F. (2003)
          “Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their
          surface coating,” Biomaterials, 24:1001–1011.
        Willems, I, Konya, Z., Colomer, J.F., Van Tendeloo, G., Nagaraju, N., Fonseca, A., and Nagy,
          J.B. (2000) “Control of the outer diameter of thin carbon nanotubes synthesized by cat-
          alytic decomposition of hydrocarbons,” Chem. Phys. Lett., 317:71.
        Witzmann, F.A., and Monteiro-Riviere, N.A. (2006) “Multi-walled carbon nanotube expo-
          sure alters protein expression in human keratinocytes,” Nanomedicine: Nanotechnology,
          Biology and Medicine 2:158–168.
        Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and
          Bruchez, M.P. (2003) “Immunofluorescent labeling of cancer marker Her2 and other cel-
          lular targets with semiconductor quantum dots,” Nature. Biotechnology., 21:41–46.
        Yamago, S.,Tokuyama, H., Nakamura, E., Kikuchi, K., Kananishi, S., Sucki, K., Nakahara,
          H., Enomoto, S., and Ambe, F. (1995) “In-vivo biological behavior of a water-miscible
   461   462   463   464   465   466   467   468   469   470   471