Page 129 - Essentials of applied mathematics for scientists and engineers
P. 129

book   Mobk070    March 22, 2007  11:7








                                     COMPLEX VARIABLES AND THE LAPLACE INVERSION INTEGRAL           119





















                   FIGURE 7.6: A doubly connected region

















                   FIGURE 7.7: Derivation of Cauchy’s integral formula

                   the curve C 1 as shown in Fig. 7.7. Thus we can write

                                                  f (z)         f (z)

                                                       dz −          dz = 0                     (7.27)
                                                 z − z 0       z − z 0
                                              C 1            C 2
                   where both integrations are counterclockwise. Let r 0 now approach zero so that in the second
                                                                   iθ
                   integral z approaches z 0 , z − z 0 = r 0 e iθ  and dz = r 0 ie dθ. The second integral is as follows:
                                                                 2π

                                          f (z 0 )
                                                  iθ
                                              r 0 ie dθ =− f (z 0 )i  dθ =−2πif (z 0 )
                                         r 0 e  iθ
                                       C 2
                                                                θ=0
                        Thus, Cauchy’s integral formula is
                                                          1      f (z)
                                                 f (z 0 ) =          dz                         (7.28)
                                                         2πi  C  z − z 0

                   where the integral is taken counterclockwise and f (z) is analytic inside C.
   124   125   126   127   128   129   130   131   132   133   134