Page 161 - Essentials of applied mathematics for scientists and engineers
P. 161

book   Mobk070    March 22, 2007  11:7








                                                                  STURM–LIOUVILLE TRANSFORMS        151
                   Problems
                   Use an appropriate Sturm–Liouville transform to solve each of the following problems:

                      1. Chapter 3, Problem 1.
                      2. Chapter 2, Problem 2.

                      3. Chapter 3, Problem 3.
                                                ∂u    1 ∂     ∂u
                                                   =        r     + G(constant t)
                                                ∂t    r ∂r   ∂r
                      4. u(r, 0) = 0
                          u(1, t) = 0

                          u bounded
                      5. Solve the following using an appropriate Sturm–Liouville transform:
                                                            2
                                                          ∂ u    ∂u
                                                               =
                                                          ∂x 2   ∂t
                                                        u(t, 0) = 0
                                                        u(t, 1) = 0
                                                        u(0, x) = sin(πx)

                      6. Find the solution for general ρ(t):
                                                                    2
                                                             ∂u   ∂ u
                                                                =
                                                             ∂t   ∂x 2
                                                          u(t, 0) = 0

                                                          u(t, 1) = ρ(t)
                                                          u(0.x) = 0

                   FURTHER READING
                   V. S. Arpaci, Conduction Heat Transfer, Reading, MA: Addison-Wesley, 1966.
                   R. V. Churchill, Operational Mathematics, 3rd ed. New York: McGraw-Hill, 1972.
                   I. H. Sneddon, The Use of Integral Transforms, New York: McGraw-Hill, 1972.
   156   157   158   159   160   161   162   163   164   165   166