Page 15 - Excel for Scientists and Engineers: Numerical Methods
P. 15

xii                                        EXCEL: NUMERICAL METHODS


                   The Gauss-Seidel Method Implemented on a Worksheet ............................   203
                   The Gauss-Seidel Method Implemented on a Worksheet
                    Using Circular References  ........................................................................   204
                   A Custom Function Procedure for the Gauss-Seidel Method ......................   205
               Solving Nonlinear Systems by Iteration .............................................................   207
                   Newton's Iteration Method ..........................................................................   207
               Problems  .............................................................................................................   213
               Chapter 10 Numerical Integration of Ordinary Differential Equations
                           Part I: Initial Conditions                                217
               Solving a Single First-Order Differential Equation ............................................   218
                   Euler's Method .............................................................................................  218
                   The Fourth-Order Runge-Kutta  Method .....................................................   220
                   Fourth-Order Runge-Kutta Method Implemented on a Worksheet ............. 220
                   Runge-Kutta Method Applied to a Differential Equation
                     Involving Both x and y .............................................................................  223
                   Fourth-Order Runge-Kutta Custom Function
                     for a Single Differential Equation with the Derivative Expression
                     Coded in the Procedure ............................................................................   224
                   Fourth-Order Runge-Kutta Custom Function
                     for a Single Differential Equation with the Derivative Expression
                     Passed as an Argument .............................................................................   225
               Systems of First-Order Differential Equations  ...................................................  228
                   Fourth-Order Runge-Kutta Custom Function
                     for Systems of Differential Equations ......................................................   229
               Predictor-Corrector Methods.,  ............................................................................   235
                   A Simple Predictor-Corrector Method .........................................................  235
                   A Simple Predictor-Corrector Method
                     Utilizing an Intentional Circular Reference  ..............................................   236
               Higher-Order Differential Equations .................................................................   238
               Problems  .............................................................................................................  241

               Chapter 11 Numerical Integration of Ordinary Differential Equations
                           Part II: Boundary Conditions                              245
               The Shooting Method .........................................................................................  245
                   An Example: Deflection ofa Simply Supported Beam ...............................  246
                   Solving a Second-Order Ordinary Differential Equation
                     by the Shooting Method and Euler's Method ...........................................  249
                   Solving a Second-Order Ordinary Differential Equation
                     by the Shooting Method and the RK Method ...........................................  251
               Finite-Difference Methods .................................................................................   254
                   Solving a Second-Order Ordinary Differential Equation
                     by the Finite-Difference Method ..............................................................  254
   10   11   12   13   14   15   16   17   18   19   20