Page 230 - Excel for Scientists and Engineers: Numerical Methods
P. 230

CHAPTER 9       SYSTEMS OF SIMULTANEOUS EQUATIONS                    207



                    Next C
                   sum = sum - coeff-matrix(R,  R) * ResultVector(R)
                   ' Calculate the current result value
                   result = (const-vector(R) - sum) I  coeff-matrix(R, R)
                   ' If result exceeds previous value by more than toleranceset flag to false.
                   If Abs(ResultVector(R) - result) > tolerance Then ConvergeFlag = False
                   ' Save the current value.
                   ResultVector(R) = result
                   Next R
                   ' When all terms are done in this loop, exit if all have converged.
                   If ConvergeFlag = True Then GaussSeidel =
                   Application.Transpose(ResultVector): Exit Function
                   Next J
                   ' Did not converge, so send back an error value.
                   GaussSeidel = CVErr(x1ErrNA)
                   End Function
                             Figure 9-13. VBA code for the Gauss-Seidel method.
                  (folder 'Chapter 09 Simultaneous Equations', workbook 'Simult Eqns II', module 'GaussSeidelFunction')



                Solving Nonlinear Systems

                by Iteration
                   Systems of nonlinear equations, as exemplified by
                                           w3 + 2x2 + 3y - 42 =  -2.580
                                                wx - XY  + YX  =  -3.9  19
                                               w2+2wx+x2= 1.000
                                               w + x + y - z =  -3.663
                or
                                            2 sinx + 3 cosy =  0.41 19
                                                2ex+3 lny=  3.427
                can only be solved by  iterative methods.  Newton's  iteration method  is the most
                commonly used method for solving systems of nonlinear equations.
                Newton's Iteration Method
                   In  a  manner  similar  to  that  in  Chapter  6,  we  can  express  each  of  the  n
                simultaneous equations:

                                                   . ., Xn) = CI
                                                ~
                                          FI(XI, 2 ,
                                          FZ(XI, ~2.9 -  9  xn) = c2
                                                   *
   225   226   227   228   229   230   231   232   233   234   235