Page 258 - Flexible Robotics in Medicine
P. 258

Soft-bodied flexible bending mechanism with silent shape memory alloys  247

               [12] M.S. Kalairaj, H. Banerjee, C.M. Lim, P.Y. Chen, H. Ren, Hydrogel-matrix encapsulated Nitinol
                    actuation with self-cooling mechanism, RSC Adv. 9 (59) (2019) 34244 34255.
               [13] A. Buguin, M.H. Li, P. Silberzan, B. Ladoux, P. Keller, Micro-actuators: when artificial muscles made
                    of nematic liquid crystal elastomers meet soft lithography, J. Am. Chem. Soc. 128 (4) (2006)
                    1088 1089.
               [14] R.F. Shepherd, A.A. Stokes, J. Freake, J. Barber, P.W. Snyder, A.D. Mazzeo, et al., Using explosions to
                    power a soft robot, Angew. Chem. Int. Ed. 52 (10) (2013) 2892 2896.
               [15] R.V. Martinez, C.R. Fish, X. Chen, G.M. Whitesides, Elastomeric origami: programmable paper-
                    elastomer composites as pneumatic actuators, Adv. Funct. Mater. 22 (7) (2012) 1376 1384.
               [16] A. De Greef, P. Lambert, A. Delchambre, Towards flexible medical instruments: review of flexible fluidic
                    actuators, Precis. Eng. 33 (4) (2009) 311 321.
               [17] C.D. Onal, R.J. Wood, D. Rus, Towards printable robotics: origami-inspired planar fabrication of three-
                    dimensional mechanisms, in: 2011 IEEE International Conference on Robotics and Automation, 2011,
                    pp. 4608 4613.
               [18] H. Okuzaki, T. Saido, H. Suzuki, Y. Hara, H. Yan, A biomorphic origami actuator fabricated by folding a
                    conducting paper, J. Physics: Conf. Ser. 127 (1) (2008) 012001. IOP Publishing.
               [19] A.A. Stokes, R.F. Shepherd, S.A. Morin, F. Ilievski, G.M. Whitesides, A hybrid combining hard and soft
                    robots, Soft Robot. 1 (1) (2014) 70 74.
               [20] D.J. Abbott, C. Becke, R.I. Rothstein, W.J. Peine, Design of an endoluminal NOTES robotic system, in:
                    2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007, pp. 410 416.
               [21] G.O. Spaun, B. Zheng, L.L. Swanstro ¨m, A multitasking platform for natural orifice translumenal
                    endoscopic surgery (NOTES): a benchtop comparison of a new device for flexible endoscopic surgery and
                    a standard dual-channel endoscope, Surg. Endosc. 23 (12) (2009) 2720.
               [22] J. Won, K. DeLaurentis, C. Mavroidis, Rapid prototyping of robotic systems, in: Proceedings 2000 ICRA.
                    Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia
                    Proceedings (Cat. No. 00CH37065), vol. 4, IEEE, 2000, pp. 3077 3082.
               [23] K.J. DeLaurentis, C. Mavroidis, C. Pfeiffer, Development of a shape memory alloy actuated robotic hand,
                    in: Proceedings of the 7th International Conference on New Actuators, 2000, pp. 281 284.
               [24] M. Sivaperuman Kalairaj, B.S. Yeow, C.M. Lim, H. Ren, Needle-size bending actuators based on
                    controlled nitinol curvatures and elastic structures, J. Mech. Robot. 12 (3) (2019) 1 17.
               [25] M.S. Kalairaj, B.S. Yeow, C.M. Lim, H. Ren, Nitinol actuated soft structures towards transnasal drug
                    delivery: a pilot cadaver study, Med. Biol. Eng. Comput. 58 (3) (2020) 1 13.
               [26] A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in
                    developing miniature mechanical devices: a review on shape memory alloy mini-actuators, Sens. Actuat.
                    A Phys. 158 (1) (2010) 149 160.
               [27] M. Constantinos, C. Pfeiffer, M. Mosley, Conventional actuators, shape memory alloys, and
                    electrorheological fluids, in: Automation, Miniature Robotics and Sensors for Non-Destructive Testing
                    and Evaluation, 1999.
               [28] E. Steltz, M. Seeman, S. Avadhanula, R.S.Fearing, Power electronics design choice for piezoelectric
                    microrobots, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006,
                    pp. 1322 1328.
               [29] R.A. Conant, R.S. Muller, Cyclic fatigue testing of surface-micromachined thermal actuators, in: ASME
                    International Mechanical Engineering Congress and Exposition, 1998, pp. 15 20.
               [30] H.Y. Chan, W.J. Li, A thermally actuated polymer micro robotic gripper for manipulation of biological
                    cells, in: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 1,
                    IEEE, 2003, pp. 288 293.
               [31] M. Coelho, Materials of interaction, Doctoral Dissertation, Massachusetts Institute of Technology, 2008.
               [32] G. Kauffman, I. Mayo, Memory metal, Chem. Matters 11 (1993) 4.
               [33] M.A. Eddings, M.A. Johnson, B.K. Gale, Determining the optimal PDMS PDMS bonding technique for
                    microfluidic devices, J. Micromech. Microeng. 18 (6) (2008) 067001.
   253   254   255   256   257   258   259   260   261   262   263