Page 54 - Flexible Robotics in Medicine
P. 54

Prototyping soft origami quad-bellows robots from single-bellows characterization 37

               [18] B.P. Saunders, et al., Why is colonoscopy more difficult in women, Gastrointest. Endosc. 43 (1996)
                    124 126.
               [19] S. Sadahiro, T. Ohmura, Y. Yamada, T. Saito, Y. Taki, Analysis of length and surface area of each segment of
                    the large intestine according to age, sex and physique, Surg. Radiol. Anat. 14 (1992) 251 257.
               [20] B.P. Saunders, et al., A preoperative comparison of Western and Oriental colonic anatomy and mesenteric
                    attachments, Int. J. Colorectal Dis. 10 (1995) 216 221.
               [21] H.J. Park, et al., “Predictive factors affecting cecal intubation failure in colonoscopy trainees, BMC Med.
                    Educ. 13 (2013) 5.
               [22] L. Perry, How snakes work [Image], HowStuffWorks.com, 2004 [Online]. Available from: ,https://
                    animals.howstuffworks.com/snakes/snake3.htm..
               [23] B.C. Jayne, Kinematics of terrestrial snake locomotion, Copeia 1986 (2006) 915 927.
               [24] H.W. Lissmann, Rectilinear locomotion in a snake (Boa occidentalis), J. Exp. Biol. (1950).
               [25] H. Marvi, D.L. Hu, Friction enhancement in concertina locomotion of snakes, J. R. Soc. Interface 9
                    (2012) 3067 3080.
               [26] A. Reid, F. Lechenault, S. Rica, M. Adda-Bedia, Geometry and design of origami bellows with tunable
                    response, Phys. Rev. E 95 (2017) 013002.
               [27] K. Nakagaki, A. Dementyev, S. Follmer, J.A. Paradiso1, H. Ishii1, ChainFORM: a linear integrated
                    modular hardware system for shape-changing interfaces, in: UIST’16: Proceedings of the 29th Annual
                    Symposium on User Interface Software and Technology., 2016.
               [28] D.J. Balkcom, M.T. Mason, Introducing robotic origami folding, in: IEEE International Conference on
                    Robotics and Automation, 2004.
               [29] J.A. Faber, A.F. Arrieta, A.R. Studart, Bioinspired spring origami, Science 359 (2018) 1386 1391.
               [30] Z. Abel, T.C. Hull, T. Ta, Locked rigid origami with multiple degrees of freedom, in: Origami 6, 2016.
               [31] S. Sridar, et al., Hydro muscle   a novel soft fluidic actuator, in: Proceedings   IEEE International
                    Conference on Robotics and Automation, 2016.
               [32] M.S. Verma, A. Ainla, D. Yang, D. Harburg, G.M. Whitesides, A soft tube-climbing robot, Soft Robot. 5
                    (2018).
               [33] J.Z. Ge, A.A. Caldero ´n, N.O. Pe ´rez-Arancibia, An earthworm-inspired soft crawling robot controlled by
                    friction, in: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO 2017), 2018.
               [34] K. Wang, G. Yan, G. Ma, D. Ye, An earthworm-like robotic endoscope system for human intestine:
                    design, analysis, and experiment, Ann. Biomed. Eng. 37 (2009) 210 221.
               [35] Y. Zhou, H. Ren, M.Q.-H. Meng, Z.T.H. Tse, H. Yu, Robotics in natural orifice transluminal endoscopic
                    surgery,, J. Mech. Med. Biol. 13 (2013) 1350044.
               [36] J.X. Koh, H. Ren, Open-source development of a low-cost stereo-endoscopy system for natural orifice
                    transluminal endoscopic surgery, computer vision systems, in: 11th International Conference, ICVS 2017,
                    Shenzhen, China, 10 13 July 2017, Best Paper Finalist, Springer International Publishing, 2017,
                    pp. 357 370.
               [37] C. Li, X. Gu, X. Xiao, C.M. Lim, H. Ren, Flexible robot with variable stiffness in transoral surgery,
                    IEEE/ASME Trans. Mechatron. 25 (2020) 1 10.
   49   50   51   52   53   54   55   56   57   58   59