Page 566 - Fluid-Structure Interactions Slender Structure and Axial Flow (Volume 1)
P. 566

536               SLENDER STRUCTURES AND AXIAL FLOW

                   COPELAND, G.S. (1992) Flow-induced vibration and chaotic motion of a  slender tube
                     conveying fluid. Ph.D. dissertation, Cornell University, Ithaca, NY, U.S.A.
                   COPELAND, G.S.  & MOON, F.C.  (1992) Chaotic flow-induced vibration of  a flexible
                     tube with end mass. Journal of Fluids and Structures  6, 705-718.
                   COWPER, G.R. (1966) The shear coefficient in Timoshenko’s beam theory. Journal  of
                     Applied Mechanics 33, 335-340.
                   CRAIK, A.D.D.  (1985)  Wave  Interactions  and  Fluid  Flows.  Cambridge:  Cambridge
                     University Press.
                   CRANDALL, S.H. (1995a) The effect of  damping on the stability of  gyroscopic pendu-
                     lums. Zeitschriftfur angewandte Mathematik  und Physik  46, S761 -S780.
                   CRANDALL, S.H. (1995b) Canonical physical models of dynamic instability. In Proceed-
                     ings of  CANCAM 95 (Canadian Congress of  Applied Mechanics). Victoria, B.C., Canada,
                     pp,  1-12.
                   CRUICKSHANK, J.O. & MUNSON, B.R. (1981) Viscous fluid buckling of viscous and
                     axisymmetric jets. Journal of Fluid Mechanics 113, 221 -239.
                   CUI, H.-W., TANI, J. & QIU, J.H. (1994) Flutter robust control of a pipe conveying fluid.
                     Proceedings  1st World Conference on Structural  Control, Los  Angeles, CA, U.S.A.;
                     TP4, pp. 83-91.
                   CUI, H.-W.,  TANI, J.  & OHTOMO, K.  (1995)  Robust  flutter control  of  vertical  pipe
                     conveying fluid using gyroscopic mechanism. Transactions of JSME, Series C 61(585),
                      1822- 1826.
                   CURTAIN, R.F.  & PRITCHARD, A.J.  (1977)  Functional  Analysis  in Modern Applied
                     Mathematics. London: Academic Press.
                   CUSUMANO, J.P. (1996) Experimental application of the Karhunen-Lokve  decomposi-
                     tion to the study of modal interactions in a mechanical oscillator. In Chaotic, Fractal,
                     and Nonlinear Signal Processing  (ed. R. Katz). American Institute of  Physics.
                   CUSUMANO, J.P. (1997) Private communication (2 April 1997).
                   CUSUMANO, J.P.  & MOON, F.C.  (1995a)  Chaotic  non-planar vibrations of  the  thin
                     elastica. Part I:  Experimental observation of  planar instability. Journal of  Sound  and
                      Vibration 179, 185-208.
                   CUSUMANO, J.P.  & MOON, F.C.  (1995b)  Chaotic  non-planar vibrations  of  the  thin
                     elastica. Part 11: Derivation and analysis of a low dimensional model. Journal of  Sound
                     and  Vibration 179, 209-226.
                   CUSUMANO, J.P. & SHARKADY, M.T. (1995) An  experimental study of  bifurcation,
                     chaos, and dimensionality in a system forced through a bifurcation parameter. Nonlinear
                     Dynamics 8, 467-489.
                   CUSUMANO, J.P.,  SHARKADY, M.T.  &  KIMBLE, B.W.  (1994)  Experimental
                     measurements of  dimensionality and  spatial coherence in the  dynamics of  a flexible-
                     beam  impact oscillator. Philosophical  Transactions of  the Royal  Society  (London) A
                     347, 421 -438.
                   DANG, X.Q.,  LIU, W.M.  &  ZHENG, T.S.  (1989)  Efficient  numerical  analysis  for
                     dynamic  stability  of  pipes  conveying  fluids.  ASME  Journal  of  Pressure  Vessel
                      Technology 111, 300-303.
                   DEN HARTOG, J.P. (1956) Mechanical Vibrations, 4th edition. New York: McGraw-Hill.
                   DEN  HARTOG, J.P.  (1969) John  Orr  Memorial Lecture:  Recent  cases  of  mechanical
                     vibration. The South African Mechanical Engineer  19, 53 -68.
   561   562   563   564   565   566   567   568   569   570   571