Page 125 - Formation Damage during Improved Oil Recovery Fundamentals and Applications
P. 125

Formation Damage by Fines Migration: Mathematical and Laboratory Modeling, Field Cases  107


              zone 3. Substituting the expression for the maximum retention function
              (Eq. (3.57)) enables the evaluation of the integral:
                          1  h  p ffiffiffiffi      p ffiffiffiffiffiffi     p ffiffiffi p ffiffiffiffiffi i
              S s X;Tð  Þ5 p ffiffiffiffi Λ X 112 Λ X m 11 e Λð  X2 X mÞ
                        Λ X
                         h   p          p ffiffiffi p      p              p ffiffiffi p ffiffiffiffiffiffiffiffi i
                 σ ai 2σ 0     ffiffiffiffiffiffi        ffiffiffiffiffi     ffiffiffiffiffiffiffiffiffiffiffiffiffi
              1       p ffiffiffiffi  Λ X m 11 e Λð  X2 X mÞ  2 Λ X 1T 11 e Λð  X2 X1TÞ
                φσ ai Λ X
                                   ð T       2   p
                                                   ffiffiffiffiffiffiffiffi
                      Λσ 0      ΛX       qT ðÞ  2Λ X1T
              1             p ffiffiffiffie           e       dT:
                   2 2
                       2
                8π r U φσ ai X      X m 2X  X 1T
                    i  m
                                                                         (3.81)
                 The solution is presented here for an arbitrary injection rate, q(T).
                 The solution for zone 3 is similar, with the exception that the initial
              condition corresponds to the absence of strained particles along the line
              T 5 0.
                                   p ffiffiffih  p         p              p ffiffiffi p ffiffiffiffiffiffiffiffi i
                         σ ai 2 σ 0  Λ X  ffiffiffiffi         ffiffiffiffiffiffiffiffiffiffiffiffiffi  Λð  X2 X1TÞ
              S s X; Tð  Þ 5  p ffiffiffiffi e  Λ X 1 1 2 Λ X 1 T 1 1 e
                        φσ ai Λ X
                                            ð T    2
                                                        p
                                                          ffiffiffiffiffiffiffiffi
                               Λσ 0      ΛX    qTðÞ   2Λ X1T
                       1             p ffiffiffiffi e        e       dT:
                            2 2
                                2
                          8π r U φσ ai X     0  X 1 T
                             i
                                m
                                                                         (3.82)
                 All characteristics comprising zone 4 (X w , X , X m , X 1 T . X i ) and
              zone 5 (X m , X , X i , X 1 T . X i ) begin on the X-axis at X values greater
              than X i . As such, the suspended concentration is zero in these zones.
                 The strained concentration in zone 4 consists of particles strained in
              zones 1 and 2. The strained particle concentration in zone 5 is equal to
              the total concentration of particles that strained in zone 3. As such, the
              strained concentration for these two zones will be given by:

                                              ð
                                   S s X; Tð  Þ 5 S s X; X i 2 XÞ;       (3.83)
              and will be independent of time.
                 Zone 6 lies entirely outside of the damaged zone. As such, there are
              no suspended or strained particles in this zone.
                                   CX; TÞ 5 S s X; TÞ 5 0:               (3.84)
                                               ð
                                     ð
                 Table 3.4 presents the summary for all the solutions derived in this
              section.
   120   121   122   123   124   125   126   127   128   129   130