Page 159 - Foundations Of Differential Calculus
P. 159

142    8. On the Higher Differentiation of Differential Formulas
        Since dP = pdx and dp = qdx,wehave

                           3       3          2      3
                          d V = Pd x +3pdxd x + qdx .
        We find the higher differentials in a similar way.
        244. Now we apply this to powers of x, whose successive differentials we
        investigate, supposing that dx is not kept constant.
          I. If V = x, then
                           2     2       3     3       4      4
              dV = dx,    d V = d x,    d V = d x,    d V = d x,     ....

                    2
          II. If V = x , then
                                      dV =2xdx
             and
                           2        2      2
                          d V =2xd x +2dx ,
                                             2
                           3
                                    3
                          d V =2xd x +6dx d x,
                           4        4        3     2 2
                          d V =2xd x +8dx d x +6d x ,
                           5        5         4      2   3
                          d V =2xd x +10dx d x +20d xd x,
                              ....

                             n
         III. If in general V = x , then and
                        n−1
                dV = nx    dx,
                2       n−1 2            n−2   2
               d V = nx    d x + n (n − 1) x  dx ,
                3
               d V = nx n−1 3
                           d x
                                 n−2    2                   n−3  3
                     +3n (n − 1) x  dx d x + n (n − 1) (n − 2) x  dx ,
                4       n−1 4             n−2    3              n−2 2 2
               d V = nx    d x +4n (n − 1) x  dx d x +3n (n − 1) x  d x
                                        n−3  2 2
                     +6n (n − 1) (n − 2) x  dx d x
                                             n−4   4
                     + n (n − 1) (n − 2) (n − 3) x  dx ,
                   ....


                                                    3
                                                            4
                                            2
             If dx happens to be constant, then d x =0, d x =0, d x = 0, and so
             forth. Thus we have the same differentials we found earlier under this
             hypothesis.
   154   155   156   157   158   159   160   161   162   163   164