Page 167 - Foundations Of Differential Calculus
P. 167

150    8. On the Higher Differentiation of Differential Formulas
                      2                     2       2       2
          I. Let y = x . Then dy =2xdx and d y =2xd x +2dx . When these
             values are substituted into the formula
                                               2
                                       2
                                    dy d x − dx d y ,
                                         dx 3
             we have
                                 2          2      3
                           2xdxd x − 2xdxd x − 2dx   = −2.
                                      dx 3

                     n
          II. Let y = x . Then dy = nx n−1 dx and
                            2     n−1 2             n−2   2
                          d y = nx    d x + n (n − 1) x  dx .
             When these values are substituted, the formula
                                                2
                                       2
                                    dy d x − dx d y
                                         dx 3
             is transformed into
               n−1    2      n−1    2            n−2  3
             nx    dx d x − nx  dx d x − n (n − 1) x  dx  = −n (n − 1) x n−2 .
                                 dx 3
                      √
                            2
         III. Let y = − 1 − x . Then
                                           xdx
                                     dy = √
                                           1 − x 2
             and                       2           2
                               2     xd x        dx
                              d y = √      +         3/2  ,
                                                   2
                                     1 − x 2  (1 − x )
             so that the formula
                                       2
                                                2
                                    dy d x − dx d y
                                         dx 3
             becomes
                        2            2
                     xd x         xd x           1           −1
                     √       −    √       −         3/2  =      3/2  .
                                                  2
                                                              2
                  dx 2  1 − x 2  dx 2  1 − x 2  (1 − x )  (1 − x )
                                                  2
        In all of these examples the second differentials d x cancel each other. This
        also happens no matter what other functions of x are substituted for y.
        258. Since these examples have already shown the truth of our proposi-
        tion, namely, that the formula
                                     2
                                             2
                                  dy d x − dx d y
                                       dx 3
   162   163   164   165   166   167   168   169   170   171   172