Page 55 - Foundations Of Differential Calculus
P. 55

38    2. On the Use of Differences in the Theory of Series
        62. Hence, for various values of n we have the following:
              0
           S.x = x,
              1   1  2  1
           S.x =   x + x,
                  2     2
              2   1  3  1  2  1
           S.x =   x + x + x,
                  3     2     6
              3   1  4  1  3  1  2
           S.x =   x + x + x ,
                  4     2     4
              4   1  5  1  4  1  3  1
            Sx =   x + x + x −        x,
                  5     2     3     30
              5   1  6  1  5  5  4   1  2
           S.x =   x + x +      x −    x ,
                  6     2     12     12
              6   1  7  1  6  1  5  1  3  1
           S.x =   x + x + x − x +          x,
                  7     2     2     6     42
              7   1  8  1  7  7  6   7  4   1  2
           S.x =   x + x +      x −    x +    x ,
                  8     2     12     24     12
              8   1   1  8  2  7  7  5  2  3   1
           S.x =    + x + x −       s + x −      x,
                  9   2     3     15    9     30
              9   1  10   1  9  3  8  7  6  1  4   3  2
           S.x =    x  + x + x −        x + x −      x ,
                  10      2     4     10    2     20
             10   1  11   1  10  5  9  7    5  1  3   5
          S.x   =   x  + x    + x − x + x − x +        x,
                  11      2     6              2     66
             11   1  12   1  11  11  10  11  8  11  6  11  4  5  2
          S.x   =   x  + x    +    x  −   x +    x −    x +    x ,
                  12      2     12       8      6      8     12
             12   1  13   1  12  11   11  9  22  7  33  5  5  3  691
          S.x   =   x  + x    + x  −    x +    x −    x + x −        x,
                  13      2           6      7      10    3     2730
             13   1  14   1  13  13  12  143  10  143  8  143  6  691  2
          S.x   =   x  + x    +    x  −    x   +    x −     x −     x ,
                  14      2     12       60      28      20      420
             14   1  15   1  14  7  13  91  11  143  9  143  7
          S.x   =   x  + x    + x    −   x   +    x −     x
                  15      2     6      30      18      10
                    91  5  691  3  7
                 +    x −     x + x,
                    6      90      6
             15   1  16   1  15  5  14  91  12  143  10  429  8
          S.x   =   x  + x    + x    −   x   +    x  −     x
                  16      2     4      24      12       16
                    455  6  691  4  35  2
                 +     x −     x +    x ,
                    12      24      4
             16   1  17   1  16  4  15  14  13  52  11  143  9
          S.x   =   x  + x    + x    −   x   +   x  −     x
                  17      2     3       3      3        3
                    260  7  1382  5  140  3  3617
                 +     x −      x +     x −      x,
                     3       15       3      510
        and so forth. These formulas can be continued to the twenty-ninth power.
        Indeed, they can be carried to even higher powers, provided that the nu-
        merical coefficients have been worked out.
   50   51   52   53   54   55   56   57   58   59   60