Page 276 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 276

1656_C005.fm  Page 256  Monday, May 23, 2005  5:47 PM





                       256                                 Fracture Mechanics: Fundamentals and Applications


                         37. Anderson,  T.L. and Stienstra, D., ‘‘A Model to Predict the Sources and Magnitude of Scatter in
                             Toughness Data in the Transition Region.” Journal of Testing and Evaluation, Vol. 17, 1989, pp. 46–53.
                         38. Evans, A.G., ‘‘Statistical Aspects of Cleavage Fracture in Steel.”  Metallurgical Transactions, Vol.
                             14A, 1983, pp. 1349–1355.
                         39. Wallin, K., Saario, T., and Törrönen, K., ‘‘Statistical Model for Carbide Induced Brittle Fracture in
                             Steel.” Metal Science, Vol. 18, 1984, pp. 13–16.
                         40. Beremin, F.M., ‘‘A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel.” Met-
                             allurgical Transactions, Vol. 14A, 1983, pp. 2277–2287.
                         41. Weibull, W., ‘‘A Statistical Distribution Function of Wide Applicability.” Journal of Applied Mechanics,
                             Vol. 18, 1953, pp. 293–297.
                         42. Stienstra, D.I.A., ‘‘Stochastic Micromechanical Modeling of Cleavage Fracture in the Ductile-Brittle
                             Transition Region.” Ph.D. Dissertation, Texas A&M University, College Station, TX, 1990.
                         43. Anderson, T.L., Stienstra, D.I.A., and Dodds, R.H., Jr., ‘‘A Theoretical Framework for Addressing
                             Fracture in the Ductile-Brittle Transition Region.”  Fracture  Mechanics:  24th Volume, ASTM  STP
                             1207, American Society for Testing and Materials, Philadelphia, PA (in press).
                         44. Gell, M. and Smith, E., ‘‘The Propagation of Cracks Through Grain Boundaries in Polycrystalline
                             3% Silicon-Iron.” Acta Metallurgica, Vol. 15, 1967, pp. 253–258.
                         45. Anderson, T.L. and Dodds, R.H., Jr., ‘‘Specimen Size Requirements for Fracture Toughness Testing
                             in the Ductile-Brittle  Transition Region.”  Journal  of  Testing  and Evaluation,   Vol. 19, 1991, pp.
                             123–134.
                         46. Wallin, K. ‘‘Microscopic Nature of Brittle Fracture.” Journal de Physique, Vol. 3, 1993, pp. 575–584.
                         47. Wallin, K., ‘‘Fracture Toughness Testing in the Ductile-Brittle Transition Region.” In: K. Salarna, et al. (eds.),
                             Advances in Fracture Research, Proceedings of the Se venth International Conference on Fracture
                             (ICF7) Pergamon Press, Oxford, 1989, pp. 267–276.
                         48. Rosenfield, A.R. and Shetty, D.K., ‘‘Cleavage Fracture in the Ductile-Brittle  Transition Region.”
                             ASTM STP 856, American Society for Testing and Materials, Philadelphia, PA, 1985, pp. 196–209.
                         49. Hoagland, R.G., Rosenfield, A.R., and Hahn, G.T., ‘‘Mechanisms of Fast Fracture and Arrest in Steels.”
                             Metallurgical Transactions, Vol. 3, 1972, pp. 123–136.
                         50. Krauss, G., Principles of Heat Treatment of Steel. American Society for Metals, Metals Park, OH, 1980.
                         51. Riedel, H.,  Creep  Crack  Growth. ASTM STP 1020, American Society for Testing and Materials,
                             Philadelphia, PA, 1989, pp. 101–126.
                         52. Bain, L.J., Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker, New York, 1978
   271   272   273   274   275   276   277   278   279   280   281